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a b s t r a c t

Wepresent Maxent, a tool for performing analytic continuation of spectral functions using themaximum
entropy method. The code operates on discrete imaginary axis datasets (values with uncertainties) and
transforms this input to the real axis. The code works for imaginary time and Matsubara frequency data
and implements the ‘Legendre’ representation of finite temperature Green’s functions. It implements a
variety of kernels, default models, and grids for continuing bosonic, fermionic, anomalous, and other data.
Our implementation is licensed under GPLv3 and extensively documented. This paper shows the use of
the programs in detail.

Program summary

Program Title:maxent
Program Files
doi: http://dx.doi.org/10.17632/rf3p4psdhs.1
Licensing provisions: GPLv3
Programming language: C++
Nature of problem: The analytic continuation of imaginary axis correlation functions to real frequency/time
variables is an ill-posed problem which has an infinite number of solutions.
Solution method: The maximum entropy method obtains a possible solution that maximizes entropy,
enforces sum rules, and otherwise produces ‘smooth’ curves. Our implementation allows for input in
Matsubara frequencies, imaginary time, or a Legendre expansion. It implements a range of bosonic,
fermionic and generalized kernels for normal and anomalous Green’s functions, self-energies, and two-
particle response functions.
External routines/libraries: ALPSCore [1][2], GSL, HDF5
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1. Introduction

Analytic continuation of numerical data is a standard problem
in condensedmatter physics. It primarily appearswhen correlation
functions of a many-body problem, computed in an imaginary
time statistical mechanics formulation, need to be interpreted as
response or spectral functions on the real axis. While imaginary
time (or the Fourier transform, Matsubara frequency) correlation
functions are naturally obtained in numerical simulations such
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as quantum Monte Carlo lattice [1] and impurity solvers [2–5],
their real axis counterparts that correspond to response functions,
which are measured in experiment, are not typically accessible to
numerical techniques.
At the heart of this is that the continuation from the imaginary

axis to the real axis is exceptionally ill conditioned, such that small
fluctuations of the input data (either from statistical Monte Carlo
noise or a truncation of the accuracy to finite precision numbers)
lead to large fluctuations of the output data, rendering any direct
transformations useless in practice. Several alternatives have been
proposed, among them are the construction of rational polyno-
mial functions (Padé approximants) [6–8], a constrained optimiza-
tion procedure [9], a stochastic analytic continuation method [10],
a stochastic regularization method [11,12], and a stochastic an-
alytic inference method [13]. The standard method, however, is
the so-called maximum entropy method (MEM) [14,15], for which
we provide an implementation in this paper. A comparison be-
tween MEM and other methods for bosonic Green’s functions has
been studied in Ref. [16]. Our implementation, Maxent, is part of
the ALPS applications [17–19] and makes use of the core ALPS li-
braries [20]. In the following, we will briefly review the formal-
ism (referring the reader to Ref. [14] and the original literature for
more details), introduce our implementation, and illustrate its us-
age with examples.

2. Analytic continuation

2.1. Analytic continuation formalism

We start our considerations with the imaginary time Green’s
function G(τ ) = −⟨c(τ )cĎ(0)⟩, which is a continuous function
for 0 < τ < β , and is periodic for bosonic and anti-periodic for
fermionic systems within τ ∈ [0, β]. In this notation, c denotes
an annihilation operator, cĎ a creation operator, and the time-
dependence of the operator and its expectation value are to be in-
terpreted in the usual sense [21]. Imaginary time Green’s functions
of this type are the fundamental objects that most QMC methods
produce as a simulation output. The Green’s function in τ can be
related to the Green’s function on the imaginary frequency axis
through a Fourier transform

G(iωn) =

 β

0
eiωnτG(τ ). (1)

The ‘Matsubara’ frequencies iωn come from poles of the distribu-
tion functions and are defined as iωn = 2π(n+

1
2 )/β for fermionic

and iωn = 2πn/β for bosonic operators.
For the rest of the article, we assume that these Green’s

functions are not known to arbitrary precision. Rather, we work
with a truncation of the Green’s function to N components, which
are obtained by averaging a set ofM estimates for each component,
G(i)
n , that are independent and Gaussian distributed so that if there
are M samples for each n, the estimate for the Green’s function is
given by

Gn =
1
M

M
j=1

G(j)
n . (2)

Different components n and m of the Green’s function may be
correlated. This is encapsulated in the covariance matrix Cnm,
which is estimated as

Cnm =
1

M(M − 1)

M
j=1

(Gn − G(j)
n )(Gm − G(j)

m ). (3)

In the case of fermions, the Matsubara frequency Green’s
function G(iωn) and its imaginary time counterpart G(τ ) are

related to a real frequency Green’s function G(ω) via

G(iωn) =
−1
π


∞

−∞

dωIm [G(ω)]
iωn − ω

, (4)

G(τn) =
1
π


∞

−∞

dωIm [G(ω)] e−τnω

1+ e−βω
, (5)

where τ has been discretized in some manner to N points.
The imaginary part of the Green’s function that appears in the
numerators of Eqs. (4) and (5) defines the spectral function

A(ω) = −
1
π
Im [G(ω)] . (6)

Obtaining G(ω) and A(ω) in addition to related quantities for
bosonic and other response functions, as well as self-energies, is
the main purpose of this paper.
We can formulate Eq. (5) as

Gn = G(τn) =


∞

−∞

dω A(ω)Kn(ω), (7)

Kn(ω) = K(τn, ω) = −
e−τnω

1+ e−ωβ
, (8)

where Kn is the ‘kernel’ of the analytic continuation, here for a
transformation of a fermionic Green’s function from imaginary
time to real frequencies. Kernels for other distribution functions
and imaginary axis representations are listed in Section 3.3, Ta-
bles 3 and 4.
Given a candidate spectral function A(ω) on the real axis and

the associated kernel, the imaginary axis Green’s function can be
evaluated using Eq. (7) to create an estimate Ḡn, a process known
as a back-continuation. To calculate the consistency of a spectral
function A(ω) with the imaginary axis data Gn, one can define a
‘‘goodness of fit’’ quantity χ2

χ2 =

M
n,m

(Ḡn − Gn)
∗C−1

nm (Ḡm − Gm), (9)

where Cnm is defined in Eq. (3). Consistency of A with Gn within
errors given by Cnm is achieved for χ2 ∼ M . If the input data is
uncorrelated then only the diagonal elements of the covariance
matrix are non-zero, in which case χ2 takes the form

χ2 =

M
n

(Ḡn − Gn)
2

σ 2n
(10)

where σn is the standard error in Gn.

2.2. Inversion of the kernel

To computationally solve for A(ω) in Eq. (7), the simplest
method to employ is a least squares fitting routine, which attempts
to minimize a functional Q = χ2 with χ2 described in Eq. (9).
While back-continuation is a straightforward procedure that gives
a unique result, the inversion of Eq. (7) is ill conditioned, i.e. there
are many solutions A that satisfy G = KA to within the uncertainty
given by Cnm.

2.3. Maximum entropy method

Instead of least-squares fitting, analytic continuation algo-
rithms impose additional criteria on A, such as smoothness [9],
in order to reduce the space of acceptable solutions. In the max-
imum entropy method an ‘‘entropy’’ term, S, is also considered to
help regularize the solutions, such that the functional to minimize
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