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a b s t r a c t

We show how to significantly reduce the number of energy bands required to model the interaction of
light with crystalline solids in the velocity gauge. We achieve this by deriving analytical corrections to
the electric current density. These corrections depend only on band energies, the matrix elements of
the momentum operator, and the macroscopic vector potential. Thus, the corrections can be evaluated
independently from modeling the interaction with light. In addition to improving the convergence of
velocity-gauge calculations, our analytical approach overcomes the long-standing problemof divergences
in expressions for linear and nonlinear susceptibilities.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The velocity and length gauges are two most frequent choices
for a theoretical description of the interaction between electro-
magnetic radiation andmatter. Even though, in principle, all phys-
ical observables must be gauge-independent, the gauge choice is
very important for numerical simulations because approximations
and discretization errors violate the gauge invariance in its strict
sense [1]. In atomic and molecular physics, where quantum sys-
tems are finite, both gauges are easy to implement. The situation is
different for modeling the interaction of light with bulk crystals,
where an infinite periodic lattice potential and the degenerate
energy states present difficulties for length-gauge implementa-
tions [2,3]. These difficulties also pertain to the closely related
approach of modeling quantum dynamics in the basis of Houston
states [4], also known as accelerated Bloch states [5]. The funda-
mental problem here is that these methods require differentiation
with respect to the crystal momentum, k, while numerically eval-
uated Bloch states are, in general, not smooth functions of k [6,7].
The problembecomes particularly severe formodeling strong-field
phenomena, where electrons traverse a significant part of the Bril-
louin zone during a laser cycle [8–11]. Solutions to these problems
are known [3,12], but they either donot ensure the periodicitywith
respect to k [13] or require the evaluation of so-called covariant
derivatives [3,14,15]. Evaluating covariant derivativeswith respect
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to the crystal momentum at each propagation step slows down
computations. In contrast, the velocity gauge does not require
differentiationwith respect to the crystal momentum, which often
makes it advantageous for modeling light-driven electron dynam-
ics [16–21]. However, performing velocity-gauge simulations in
a basis of Bloch states has a serious drawback: for convergence,
they usually require many more energy bands than length-gauge
orHouston-basis simulations [22]. In this paper,we propose a solu-
tion to this problem.We do so by deriving analytical corrections to
the polarization response evaluatedwith a relatively small number
of bands (Section 3). Although we derive our corrections in the
limit of a weak external field, we show in Section 4 that they work
surprisingly well even for strong optical fields.

2. Velocity-gauge description of light–solid interaction

Let |nk⟩ denote a Bloch state with band index n and crystal
momentum k. The Bloch states are eigenstates of an unperturbed
Hamiltonian Ĥ (0). That is, Ĥ (0) |nk⟩ = ϵn(k) |nk⟩, where ϵn(k)
is energy. Even though Ĥ (0) is a single-particle operator, it may
represent an outcome of self-consistent many-body calculations.
We describe the interaction with a classical electromagnetic field
by adding an interaction operator, Ĥint, to the Hamiltonian. Unitary
transformations allow one to write Ĥint in different forms. One
of them is Ĥint = e(A · p̂ + p̂ · A)/(2m0) + e2A2/m0. Here,
A is the vector potential of the electromagnetic field, p̂ is the
momentum operator, e > 0 is the elementary charge, and m0
is the electron mass. In SI units, the relation between A and the
electric field is E = −∂A/∂t . In the following, we assume the
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dipole approximation, where the dependence of A on coordinate,
r, is neglected. The term e2A2/m0 can be eliminated by the unitary
transformation |ψ⟩ → exp[−ie2/(2h̄m0)

∫ t
−∞

A2(t ′)dt ′] |ψ⟩. The
result is the velocity-gauge form of the Hamiltonian:

Ĥ(t) = Ĥ (0)
+ Ĥint = Ĥ (0)

+
e
m0

A(t) · p̂. (1)

In this equation, the external field preserves the spatial periodicity
of the lattice potential. Therefore, the Bloch theorem applies not
only to Ĥ (0), but also to Ĥ(t). Consequently, transitions induced
by the external field formally preserve the crystal momentum,
which is one of the most important reasons why velocity-gauge
simulations are so attractive for numerical calculations.

However, the convenience of preserving the crystalmomentum
comes at a price. This becomes apparent if we consider the inter-
action of a dielectric with a constant electric field (E = const) that
is sufficientlyweak to neglect interband tunneling. Even though, in
the absence of free charge carriers, all physical observables are ex-
pected to take constant values, the velocity-gauge wave functions
have a nontrivial dependence on time because the vector potential,
A(t) = −

∫ t
−∞

E(t ′)dt ′, makes the Hamiltonian time-dependent.
In this case, numerical approximations, such as truncating the
basis, lead to a spurious divergence of the polarization response
in the low-frequency limit [2,23–26]. This is one of the underlying
reasonswhy velocity-gauge calculations requiremanymore bands
than length-gauge or Houston-basis ones.

Another, closely related, problem with the velocity gauge can
be understood by considering a particular Bloch state exposed to a
weak long half-cycle of the electric field. Because the field performs
only a half of the oscillation, the vector potential has a nonzero
value at the end of the pulse. In the adiabatic limit, the pulse
transforms an initial state |nk0⟩ into another Bloch state, |nk⟩,
provided that the nth band is nondegenerate along the reciprocal-
space path prescribed by the acceleration theorem: k(t) = k0 +

eh̄−1A(t). This adiabatic intraband motion is guaranteed in length-
gauge and Houston-basis calculations, making these approaches
a good choice when only ad hoc transition matrix elements are
available [27,28]. In contrast, the correct adiabatic behavior is not
explicitly encoded in the velocity-gauge equations of motion—it
is implicit in the parameters of the model, demanding accurate
energies and matrix elements.

The only matrix elements required in the velocity-gauge simu-
lations are those of the momentum operator:

pnm(k) =
1
Ω

∫
cell

d3(r)ψ∗

nk(r)p̂ψmk(r), (2)

where the integration is performed over a unit cell, Ω is the cell
volume, and ψnk(r) = ⟨r|nk⟩ are Bloch functions in the coordinate
representation. Indeed, let us search for time-dependent wave
functions using the following ansatz:

|ψk(t)⟩ =

∑
m

αmk(t) |mk⟩ . (3)

Inserting this ansatz into the time-dependent Schrödinger equa-
tion (TDSE), ih̄∂t |ψ⟩ = Ĥ(t) |ψ⟩, and assuming that

⟨
mk′

|nk
⟩

=

δmnδ(k − k′), we obtain a system of coupled differential equations
for the probability amplitudes:

ih̄
∂ αqk

∂t
= ϵq(k)αqk +

e
m0

A(t) ·

∑
m

pqm(k)αmk. (4)

In these equations, the medium properties are fully defined by
ϵq(k) and pqm(k). Once the probability amplitudes are evaluated,
the electric current density can be obtained according to

J(t) =

∑
n∈occ

∫
BZ

d3k
(2π )3

fn(k)jnk(t). (5)

Here, fn(k) is the Fermi factor of band n in the initial (stationary)
state. The summation in Eq. (5) is carried out over all the bands that
contain electrons in the unperturbed state (thesewould be valence
bands for a dielectric), the integration is performed over the first
Brillouin zone (BZ), and the contribution from crystal momentum
k in initial band n is given by

jnk(t) = −
e
m0

(
eA(t) + Re

[∑
ij

(
α
(n)
ik (t)

)∗

α
(n)
jk (t)pij(k)

])
. (6)

In this equation, we have added a superscript to the probability
amplitudes in order to denote the initial band:α(n)

ik (tmin) = δin. That
is, in each initial state, only one band is occupied; by adding the
contributions from all the initial states, as prescribed by Eq. (5), we
model a solid with occupied valence bands. Once J(t) is evaluated,
the polarization response, which is the key quantity in linear and
nonlinear optics, is readily given by [29,30]

P(t) =

∫ t

−∞

dt ′ J(t ′). (7)

3. Velocity-gauge corrections

In the previous section, we argued that velocity-gauge simula-
tions tend to violate adiabaticity where adiabaticity is expected,
which is why they demand high-quality band energies and matrix
elements. In this section, we derive analytical corrections that alle-
viate this issue in the case where a finite number of energy bands
is the main source of discretization errors. In the next section,
we will demonstrate that our corrections work well even if the
optical response is far frombeing adiabatic (that is, the polarization
P(t) is not a function of the electric field at time t). In spite of
that, we derive the corrections by considering an adiabatic limit.
It is worth clarifying this point before we start the derivation. If
velocity-gauge simulations require NVG bands to produce physi-
cally meaningful results, while length-gauge simulations require
only NLG < NVG bands, then the bands that are unnecessary in the
length gauge serve a rather numerical than physical purpose. They
are required in the velocity gauge to ensure that the basis set is rea-
sonably complete. After the interaction with an external field, the
occupation of these highly excited states is negligibly small. Even if
the polarization response due to ‘‘physically relevant’’ bands is very
nontrivial, the contributions due to very high conduction bands
(and very low valence ones) are expected to be, in some sense,
‘‘simple’’. We argue that this simplicity consists in the adiabaticity
with respect to the vector potential: the difference between the
exact current density, J(t), and that evaluated with a finite number
of bands, JN (t) is, approximately, a function of the vector potential,
A, at time t . In this case, one may use any function A(t) that is
particularly well suited for analytical calculations. We chose

A(t) = Re
[
aeγ t−iω0t

]
, (8)

where a is a constant vector (it is complex-valued unless A is
linearly polarized), ω0 is a carrier-wave frequency, and γ > 0 is
a small parameter that controls how slowly the field is turned on.
The next step will be the evaluation of the current density using
time-dependent perturbation theory, where we only consider a
time interval where the external field may be viewed as a pertur-
bation. Once this step is accomplished, we will take the adiabatic
limit: ω0 → 0. Here comes our key idea. When the amplitude
of the vector potential, |a|, is fixed and its frequency is decreased,
then the electric field decreases as well; consequently, we expect
limγ→0+limω0→0J(t) ≡ 0 for a dielectric and, more generally,

lim
γ→0+

lim
ω0→0

J(t) ≡ Jad
(
A(t)

)
(9)
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