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a b s t r a c t

A numerical method based on artificial neural networks is used to solve the inverse Schrödinger equation
for amulti-parameter class of potentials. First, the finite elementmethodwas used to solve repeatedly the
direct problem for different parametrizations of the chosen potential function. Then, using the attainable
eigenvalues as a training set of the direct radial basis neural network a map of new eigenvalues was
obtained. This relationship was later inverted and refined by training an inverse radial basis neural
network, allowing the calculation of the unknown parameters and therefore estimating the potential
function. Three numerical examples are presented in order to prove the effectiveness of the method. The
results show that the method proposed has the advantage to use less computational resources without a
significant accuracy loss.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As known the Schrödinger equation is a partial differential
equation developed during the first quarter of the 20th century and
its a fundamental part of the quantum mechanics theory. Roughly
speaking this equation describes the behavior of a system under
the influence of different potentials, and one of the main goals
is to find the dynamics of the system determined uniquely by
the eigenvalues and eigenvectors. In the following we will review
briefly the usage of numerical methods to solve the Schrödinger
equation and in particular the use of neural networks.

In general, only in limited cases exact analytic solutions can be
obtained, for example the free particle, linear harmonic oscillator
or the hydrogen atom. On the other hand, there exist a number
of useful approximation methods for more general hamiltonians,
such as perturbation methods or the Wentzel–Kramers–Brillouin
(WKB) method. Another well established methods for solving nu-
merically the Schrödinger equation, are the ones based in varia-
tions of the Numerov’s method, as shown in (Pillai et al. [1]) where
thewave function is discretized over a lattice. However, to our best
knowledge, when applied to practical physical problems, these
methods have turn out to be less successful.
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In (Braun et al.) [2], the Lanczos method is applied, on a grid, for
obtaining eigensolutions of quantum systems. This methodology
is used to solve one-, two-, and three-dimensional quantum prob-
lems. In (Ishikawa [3]) a numerical method is proposed in order to
solve accurately the eigenvalue problem in quantum mechanics.
In this case the efficiency is proved through the applications to the
harmonic oscillator, in which they achieved 15-digit accuracywith
double precision operations. In (Kannan andMasud [4]) twometh-
ods are presented in order to stabilize the Schrödinger wave equa-
tions, the first one consisting in a Garlekin/least-squares method,
whose consistency and convergence was analyzed through po-
tentials which have known analytic solutions. In (Watanabe and
Tsukada [5]) the wave function evolution in a magnetic field is
analyzed using a numerical method based on the finite elements,
improving the accuracy without increasing the computational
cost. Among other schemes proposed for solving numerically the
Schrödinger equation it can be mentioned the study done by
(Simos andWilliams [6])where they use amethod based on phase-
lag minimization in order to compute the eigenvalues, the method
was tested in two types of potentials, an even functionwith respect
of a one dimensional domain, and a general case of the Morse
potential.

Other applications of ANN in partial differential equations can
be found in (Ossandón and Reyes [7]) and (Ossandón et al. [8]),
where the inverse eigenvalue problems for the linear elasticity
operator and for the anisotropic Laplace operator are solved re-
spectively. In (Poggio et al. [9]) it is shown that the ill-posed
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problem of function approximation through sparse data can be
regularized using an appropriate class of approximation functions.

However, the ANNs have been less explored in quantum me-
chanics. Some works in this direction are given in (Lagaris et
al. [10]), where a feedforward Artificial Neural Network (ANN) is
used to find the eigenvalues of integro-differential operators, using
the analytic solutions to test the accuracy of the solutions. In this
case the neural network proved to be highly accurate, robust and
efficient. Another use for the feedforward neural network can be
seen in (Shirvany et al. [11]), where an energy term is derived
from the boundary conditionswhich allows to use an unsupervised
neural network to solve the equations, also the results given by the
neural network were compared with the analytic solutions.

In the present work, our goal is to study the recovering of
coefficients associated to the potential function through a finite
set of eigenvalues in the quantum system. We assume that the
function between the eigenvalues and the potential coefficients
is smooth in the sense that two similar inputs correspond to two
similar outputs. We emphasize that the error of any designed
ANNs cannot have a better performance than the technique used
to create the training data. As a consequence, the performance of
any ANN is directly related to the training data. In general, all the
computation process used by the neural networks, including the
training, validation and simulation process, has lower computa-
tional time than the finite element method.

Hence, the main issue of this proposed study is to solve the
inverse problem associated to the Schrödinger equation, that is to
say, calculate a set of coefficients associated to a potential func-
tion, through eigenvalues of the Schrödinger operator using ANNs.
The ANN proposed is a multilayered Radial-Basis Function (RBF)
network (see Ossandón and Reyes [7] and Ossandón et al. [8]). As
discussed in (Schilling et al. [12]), a RBF ANN can approximate a
function f using nonlinear functions which provides the best fit to
the training data. An evaluation of the performance (computational
time and accuracy) of theANNmethodologyproposedwill be done,
comparing the results to a classical numerical method based on
FEM.

The article is organized as follows. In Section 2, we give an
introduction to the eigenvalue problem in quantum mechanics.
In Section 3, we present the solution to the direct and inverse
problem associated to the calculation of the eigenvalues of the
time-independent Schrödinger equation. Numerical results and
discussion are given in Section 4. Finally, in Section 5, the conclu-
sions of this work are presented.

2. Eigenvalue problem in quantummechanics

Let Ω ⊂ Rk (k ⩾ 1) be a nonempty, open, connected and
bounded domain, with a Lipschitz-continuous boundaryΓ := ∂Ω .
The unit normal vector pointing to the exterior ofΩ is denoted by
n = (n1, n2, . . . , nk)T ∈ Rk and x = (x1, x2, . . . , xk)T ∈ Rk.

Let Λ̂ be an observable associated to a physical quantity Λ.
Let us say that ψγ is an eigenfunction of this operator, and λγ its
associated eigenvalue, if ψγ ̸= 0 and{
Λ̂ · ψγ = λγψγ in Ω,

ψγ = 0 on Γ .
(1)

It is worth noting that the eigenvalues of a hermitian operator
lie in the real line. Indeed, if wemultiply Eq. (1) byψ∗

γ and integrate
inΩ , we obtain

λγ =

∫
ψ∗
γ (x)[Λ̂ψγ (x)]dx∫

|ψγ (x)|2dx
(2)

which is real.

In the case that the observable Λ̂ is the hamiltonian opera-
tor Ĥ = −

h̄2
2m∆ψ(x) + V (x, θ), we have the well known time-

independent Schrödinger equation Ĥψγ (x) = Eγψγ (x). In this
equation h̄ is the Planck’s constant, m is the mass associated to
the quantum system, and V (x, θ) is the potential function, coming
from the potential energy and, in our case, depending on a set of
coefficients grouped in the vector θ ∈ Rl, l ⩾ 1. Thus the energy Eγ
is an eigenvalue, and ψγ (x) its related eigenfunction, associated to
the hamiltonian operator Ĥ .

3. The direct and inverse problems

3.1. The direct problem

From now on let us consider only two and three dimensional
bounded domains, i.e. k = 2 or 3. In addition let us suppose
that V (·, θ) ∈ L∞(Ω), V (x, θ) ⩾ V0 > 0 for a.e. x ∈ Ω and ∀θ ∈ Rl.
Our main goal is to solve the following eigenvalue problem:

Find E ∈ R and functions ψ(x) ̸≡ 0 which are solution of⎧⎨⎩−
h̄2

2m
∆ψ + V (x, θ)ψ = E ψ in Ω,

ψ = 0 on Γ .

(3)

As known (see [13]) the only non-null solutions of Eqs. (3) are a
pair sequence {(Ej, ψj)}j⩾1 of eigenvalues and eigenfunctions.

We define the following function SΩ,N associated to Eq. (3):

SΩ,N : Rl
→ RN ,

−→
E := (E1, E2, . . . , EN )T = SΩ,N (θ). (4)

Given the values of the coefficients θ ∈ Rl, the potential V (x, θ)
is completely well determined and consequently SΩ,N (N ∈ N), for
eachdomainΩ with regular boundaryΓ , solves the direct problem
associated to boundary-value problem (3), calculating the first N
eigenvalues of the Schrödinger operator.

Let us define the functional space

V = H1
0(Ω) =

{
v ∈ H1(Ω); v = 0 on Γ

}
, (5)

equipped with the usual norm ∥v ∥
2
1,Ω =

∫
Ω

|∇v|2dx +
∫
Ω

|v|2dx.
Thus the eigenvalue problem for Schrödinger equation with

homogeneous boundary conditions can be formulated as (weak
formulation):

Find (E, ψ) ∈ (R,V) such that

aθ(u, v) = E (u, v)0,Ω ∀v ∈ V (6)

where

aθ(u, v) :=
h̄2

2m

∫
Ω

∇u · ∇vdx +

∫
Ω

V (x, θ)uvdx and

(u, v)0,Ω =

∫
Ω

uvdx.
(7)

It is worth noting that the wellposedness of the discrete form
of (6) can be guaranteed by the fact that the corresponding ap-
proximation space satisfies the Babuska–Brezzi condition (see
[13–17] and [18]). Let {Th}h>0 be a regular family of triangulations
of Ω , made up of triangles T of diameter hT , such that h :=

sup {hT |T ∈ Th} and Ω =
⋃

{T : T ∈ Th} . In association with
the mesh Th, let us select the finite element space Vh ⊂ V of the
continuous functions in Ω which are piecewise polynomials Pj of
degree j, with j ≥ 1, in each triangle T ∈ Th.

Let (Eh, uh) ∈ (R,Vh) be the eigenpair solution to the discrete
form of (6). It is well known that the Rayleigh quotient for each
eigenvalue Eh is given by:

Eh =
aθ(uh, uh)
(uh, uh)0,Ω

. (8)
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