Accepted Manuscript

A hybrid model of laser energy deposition for multi-dimensional simulations of plasmas and metals

Mikhail M. Basko, Ilia P. Tsygvintsev

PII: S0010-4655(17)30022-X
DOI: http://dx.doi.org/10.1016/j.cpc.2017.01.010
Reference: COMPHY 6128

To appear in: Computer Physics Communications
Received date: 27 October 2016
Revised date: 6 January 2017
Accepted date: 12 January 2017

Please cite this article as: M.M. Basko, I.P. Tsygvintsev, A hybrid model of laser energy deposition for multi-dimensional simulations of plasmas and metals, Computer Physics Communications (2017), http://dx.doi.org/10.1016/j.cpc.2017.01.010.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A hybrid model of laser energy deposition for multi-dimensional simulations of plasmas and metals

Mikhail M. Basko, Ilia P. Tsygvintsev
Keldysh Institute of Applied Mathematics RAS, Miusskaya sq., 4, Moscow, 125047, Russia
RnD-ISAN/EUV Labs, Promyshlennaya Str., 1A, Moscow-Troitsk, 142191, Russia

Abstract

The hybrid model of laser energy deposition is a combination of the geometricaloptics ray-tracing method with the one-dimensional (1D) solution of the Helmholtz wave equation in regions where the geometrical optics becomes inapplicable. We propose an improved version of this model, where a new physically consistent criterion for transition to the 1D wave optics is derived, and a special rescaling procedure of the wave-optics deposition profile is introduced. The model is intended for applications in large-scale two- and three-dimensional hydrodynamic codes. Comparison with exact 1D solutions demonstrates that it can fairly accurately reproduce the absorption fraction in both the s - and p-polarizations on arbitrarily steep density gradients, provided that a sufficiently accurate algorithm for gradient evaluation is used. The accuracy of the model becomes questionable for long laser pulses simulated on too fine grids, where the hydrodynamic self-focusing instability strongly manifests itself.

Keywords: Laser absorption, laser plasmas, ray tracing PACS: 52.25.Os, 52.38.Dx, 52.38.Mf, 02.60.Lj

1. Introduction

An important ingredient in any large-scale hydrodynamic code, aimed at simulations of laser plasmas, must be a model for propagation and absorption

[^0]
https://daneshyari.com/en/article/4964433

Download Persian Version:
https://daneshyari.com/article/4964433

Daneshyari.com

[^0]: Email address: mmbasko@gmail.com (Mikhail M. Basko) URL: www.basko.net (Mikhail M. Basko)

