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a b s t r a c t

We present a new approach based on real time domain Feynman path integrals (RTPI) for electronic
structure calculations and quantum dynamics, which includes correlations between particles exactly
but within the numerical accuracy. We demonstrate that incoherent propagation by keeping the wave
function real is a novel method for finding and simulation of the ground state, similar to Diffusion Monte
Carlo (DMC) method, but introducing new useful tools lacking in DMC. We use 1D Hooke’s atom, a two-
electron systemwith very strong correlation, as our test case, whichwe solvewith incoherent RTPI (iRTPI)
and compare against DMC. This system provides an excellent test case due to exact solutions for some
confinements and because in 1D the Coulomb singularity is stronger than in two or three dimensional
space. The use of Monte Carlo grid is shown to be efficient for which we determine useful numerical
parameters. Furthermore, we discuss another novel approach achieved by combining the strengths of
iRTPI and DMC. We also show usefulness of the perturbation theory for analytical approximates in case
of strong confinements.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Feynman path integral (PI) approach offers an intuitive de-
scription of quantum mechanics [1,2], where classical mechanics
emerges transparently from disappearing wave nature of particles
along with vanishing Planck constant. Therefore, it is robust in nu-
merical calculations in cases close to classical ones, like molecular
quantum dynamics in real time [3], but becomes more challenging
and laborious for states of electrons, where the wave nature plays
larger role. Furthermore, the PI presentation of stationary states
also involves full time-dependent quantum dynamics, in contrast
with the conventional solution of the time-dependent Schrödinger
equation, where time evolution appears as simple change of the
wave function phase, only.

We have already demonstrated that numerical solutions to
stationary states and quantum dynamics of single electrons in
one dimensional potentials can be reliably found, both in regular
and Monte Carlo grids, by using real time path integral (RTPI)
propagation [4].Wehave also assessed the usefulness and accuracy
of the Trotter kernel as compared to the exact kernels and
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pointed out the advantages of the Monte Carlo grid in avoiding
spurious interference effects. For search and evaluation of the
single particle eigenstates we found a novel approach based on the
incoherent propagation [4], i.e., collapsing the wave function to its
real component after each short time step. This is the starting point
of the present study.

RTPI approach can be expected to show most of its proficiency
in simulation of many-electron systems, where correlation phe-
nomena turn out to be in major role — the same way and partly
for same reasons as it has been found to be with the more conven-
tional path integral Monte Carlo (PIMC), simulation of the imagi-
nary time propagation [5–8]. It may be pertinent to point out, that
while PIMC simulation yields the finite temperature equilibrium
description of the system of quantum particles, RTPI simulation
finds the zero-Kelvin real time quantum dynamics. Furthermore,
RTPI can also be used to find and simulate the eigenstates, as indi-
cated above. Thus, for finding and simulation of the ground state,
RTPI can be compared to the diffusion Monte Carlo (DMC) simula-
tion [9]. Thus, combination of these two can be expected to offer
novel features, which turns out to be the case.

To assess the performance of incoherent RTPI as comparedwith
DMC we choose the Hooke’s atom in one dimension as the test
bench, presenting a case of an extremely strong correlation.

Three dimensional Hooke’s atom is a helium-like system of
two electrons with Coulomb repulsion, where electron–nucleus
attraction is replaced by a confining parabolic or harmonic
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potential. It is one of the few non-trivial systems with exact
solutions for certain strengths of confinement (harmonic force
constant) [10], and therefore, it is a good test case for our new
approach. As shown below, separation of the three dimensional
problem in relative coordinates yields two problems, one of which
is the one dimensional Hooke’s atom once the angular momentum
degrees of freedom are taken out. In one dimension, the Coulomb
repulsion is strong enough to split the space to two independent
domains defined by exchange of the electrons [11–14].

In this paper we will demonstrate the novel incoherent RTPI
in finding the ground state of one dimensional Hooke’s atom by
using a Monte Carlo grid. We also analyze performance of the
simulation by comparison with DMC simulation, and furthermore,
discuss another new idea to combine the strengths of incoherent
RTPI and DMC. Accuracy of the numerical approaches is analyzed
by using analytical solutions and those from perturbation theory
(PT), where relevant.

2. Ground state

Finding or simulation of the ground state is perhaps the
most general problem to work out in dealing with quantum
systems. Here, we present our novel approach to this based on
the incoherent real time propagation [4] using the path integral
formalism. First however, we briefly present the well known
diffusion Monte Carlo (DMC) method [9] using imaginary time
propagation, to be used as a reference. These both are numerical
methods and the former one in its robust form also using Monte
Carlo technique. For the specified test case, one dimensional
Hooke’s atom, we also compare with the analytical solutions,
where available, and approximate solutions otherwise.

To keep notations simple, we use the atomic units, whereme =

e = h̄ = 4πϵ0 = 1 throughout the paper, unless otherwise stated.

2.1. Imaginary time propagation: DMC

The time-dependent Schrödinger wave equation for the many-
body wave function ψ(x, t) is

i
∂ψ(x, t)
∂t

= (H − ET )ψ(x, t), (1)

whereH is the hamiltonian, x stands for all coordinates of particles
in one or more spatial dimensions and ET is an arbitrary reference
energy or shift of zero level. Now, by replacing the real time t by
imaginary time τ = it , this becomes

−
∂ψ(x, τ )
∂τ

= (H − ET )ψ(x, τ ), (2)

which is of the form of a diffusion equation. Its solutions can be
expressed in terms of eigenfunctions φn(x) of the hamiltonian as

ψ(x, τ ) =

∞
n=0

Cnφn(x) exp[−(En − ET )τ ]. (3)

As Monte Carlo methods are useful for evaluation of integrals,
the differential equation is transformed into an integral equation.
This is done by using Green’s function formalism [9] and we seek
the solution of the form

ψ(xb, τb) =


a
G(xb, τb; xa, τa)ψ(xa, τa)dxa, (4)

where G(xb, τb; xa, τa) is the Green’s function of the system,
the position space representation of the time evolution operator
exp[−(H − ET )(τb − τa)].

The exact analytical form of the Green’s function is rarely
known, and therefore, it needs to be approximated. Use of the so

called short time approximation [9] to separate the kinetic and
potential energy contributions, T and V , gives
exp[−(H − ET )∆τ ] = exp[−(T + V − ET )∆τ ]

≈ exp[−T∆τ ] exp[−(V − ET )∆τ ]. (5)
Since T and V do not commute, in general, this approximation is
exact only in the limit ∆τ → 0 but accurate for small ∆τ for
potentials bound from below [9].

The Green’s function can be separated into two parts, kinetic
and potential (or diffusion and branching),
G(xb, τb; x, τa) ≈ Gdiff(xb, τb; x, τa)GB(xb, τb; x, τa). (6)
As this Green’s function satisfies the imaginary time Schrödinger
equation, it gives one equation for both parts of the Green’s
equation with kinetic part satisfying diffusion equation and
potential part satisfying rate equation. Solutions to these equations
are well known, a Gaussian spreading in ∆τ and an exponential
function:

Gdiff(xb, xa;∆τ) = (4πD∆τ)−N/2 exp[−(xb − xa)2/4D∆τ ] (7)
and

GB(xb, xa;∆τ) = exp

−


1
2
[V (xa)+ V (xb)] − ET


∆τ


, (8)

where the diffusion constant isD = h̄2 /2me (=1/2 in atomic units
for the electron).

With these equations one can simulate random-walk-with-
branching procedure to find the imaginary time evolution.
Carrying out the simulation iteratively with short enough time
step∆τ , large enough population of randomwalkers and adjusting
the ‘‘trial energy’’ ET to keep the simulation stationary will finally
converge to the ground state wave function distribution of walkers
and trial energy as the corresponding energy eigenvalue.

We should note, that DiffusionMonte Carlomethod is generally
used with trial wave functions [9,15], which makes DMC a
significantly more powerful tool than without, in which case it
deals with the ground states, only. Trial wave functions enable
studies of larger system sizes, finding the lowest energy states of
given symmetries and use of sc. mixed estimators for evaluation of
physical quantities. Also, use of wave function nodes, if available,
allows simulation of excited states [16,17].

Here, we use the simple DMC without trial wave functions to
compare the features of DMC and our iRTPI approach, and more
importantly, to be able to consider combination of these twoMonte
Carlo methods as another novel approach.

2.2. Real time propagation: RTPI

For the real time dynamics of a quantum many-body system
ψ(x, t)we define the Feynman path integral as

K(xb, tb; xa, ta) =

 xb

xa
exp(iS[xb, xa])Dx(t), (9)

where S[xb, xa] =
 tb
ta

Lxdt is the action of the path x(t) from (xa, ta)
to (xb, tb) and Lx is the corresponding Lagrangian [1,2]. This is the
kernel (or real time Green’s function) of the propagation.

Now, the time evolution of the wave function ψ(x, t) (or
probability amplitude), can be written as

ψ(xb, tb) =


a
K(xb, tb; xa, ta)ψ(xa, ta)dxa, (10)

where ta < tb. A more complete discussion about numerical time-
dependent coherent PI solution for the full quantum dynamics is
given elsewhere [4].

Now, we see the analogy of Eqs. (4) and (10), and the two
propagators G and K . The latter of these is complex, bringing in
the phase and interference of paths, an additional complication to
numerical approaches, called ‘‘numerical sign problem’’ [18].
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