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a b s t r a c t

Wepresent a technique for handling Dirichlet boundary conditionswith the Flux Coordinate Independent
(FCI) parallel derivative operator with arbitrary-shaped material geometry in general 3D magnetic fields.
The FCI method constructs a finite difference scheme for ∇∥ by following field lines between poloidal
planes and interpolating within planes. Doing so removes the need for field-aligned coordinate systems
that suffer from singularities in the metric tensor at null points in the magnetic field (or equivalently,
when q → ∞). One cost of this method is that as the field lines are not on the mesh, they may leave the
domain at any point between neighbouring planes, complicating the application of boundary conditions.

The Leg Value Fill (LVF) boundary condition scheme presented here involves an extrapola-
tion/interpolation of the boundary value onto the field line end point. The usual finite difference scheme
can then be used unmodified. We implement the LVF scheme in BOUT++ and use the Method of
Manufactured Solutions to verify the implementation in a rectangular domain, and show that it does
not modify the error scaling of the finite difference scheme. The use of LVF for arbitrary wall geometry is
outlined.

We also demonstrate the feasibility of using the FCI approach in non-axisymmetric configurations for
a simple diffusion model in a ‘‘straight stellarator’’ magnetic field. A Gaussian blob diffuses along the field
lines, tracing out flux surfaces. Dirichlet boundary conditions impose a last closed flux surface (LCFS) that
confines the density. Including a poloidal limiter moves the LCFS to a smaller radius.

The expected scaling of the numerical perpendicular diffusion, which is a consequence of the FCI
method, in stellarator-like geometry is recovered. A novel technique for increasing the parallel resolution
during post-processing, in order to reduce artefacts in visualisations, is described.

© 2016 Published by Elsevier B.V.

1. Introduction

Anisotropic phenomena are prevalent in magnetised plasmas.
The Lorentz force tends to confine charged particles to magnetic
field lines, with the result that the characteristic size of spatial
variations of macroscopic plasma quantities are larger in the di-
rection parallel to the magnetic field compared to those in the
perpendicular plane.

Computational techniques take advantage of this anisotropy
by, for example, aligning the computational grid to the magnetic
field and reducing the resolution in the parallel direction. How-
ever, field-aligned coordinate systems typically have difficulties
handling changes in magnetic topology; X-points, for instance,
introduce singularities in themetric tensor. The Flux Coordinate In-
dependent (FCI) parallel derivative operator [1–4] does not require
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a field-aligned coordinate system, allowing the use of simpler grids
in the perpendicular planewhile still allowing efficient handling of
anisotropic physics.

In this work, we extend the FCI technique to handle arbitrarily
shaped boundaries, including limiters, and demonstrate its use in
stellarator-like fields. This work is organised as follows: in Sec-
tion 2, we explain the FCI method and discuss its implementation;
in Sections 3 and 4, we discuss some issues about interpolation and
non-axisymmetric magnetic fields; simulations of stellarator-like
magnetic fields are in Section 5.We also describe a novel technique
for upscaling visualisations in Section 5.2.

2. Flux-Coordinate Independent method for parallel deriva-
tives

Conventionally in magnetised plasma turbulence simulations,
derivatives parallel to themagnetic field are taken by using a field-
aligned coordinate system.However, these are tied to flux surfaces,
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Fig. 1. Schematic of the Flux Coordinate Independent method for the parallel
derivative operator. Starting from a given grid point, magnetic field lines are
traced in the forward and backward directions. The argument of the operator is
interpolated to find the value at the location where the field line intersects the
adjacent perpendicular slices, allowing a finite difference scheme to be constructed.

and hence suffer from inevitable singularities in the metric tensor
when attempting to encompass multiple magnetic topologies, i.e.
crossing separatrices. These singularities can be numerically chal-
lenging to handle.

The Flux-Coordinate Independent (FCI) method for the par-
allel derivatives of a function is conceptually simple: one first
follows the magnetic field line from a given grid point in both
directions until it intersects the two adjacent perpendicular planes
(see Fig. 1). The function to be differentiated is then interpolated
in the perpendicular plane at the field intersection points, and a
finite difference scheme can be constructed using these values and
the value at the emitting grid point. Higher order finite differ-
ence schemes may be constructed by following the field line past
further perpendicular planes, interpolating at each intersection
point. It should be noted at this point that while FCI is strictly
formulated on perpendicular planes, in practice, poloidal planes
are often used. This is a reasonable approximation, given the as-
sumptions of strong anisotropy required by FCI, and we use the
terms ‘‘perpendicular’’ and ‘‘poloidal’’ interchangeably throughout
this work. Note that this approximation, and the identification of
perpendicular and poloidal planes, is weaker in low-aspect ratio
tokamaks, and breaks down entirely in devices such as Reversed-
Field Pinches.

As the finite difference scheme is constructed at each individual
grid point, the coordinate system in the perpendicular plane is no
longer tied to the flux surfaces and in principle any mesh may
be used. Other concerns may limit the choice of mesh, e.g. the
need for easy flux-surface averages, which may require a flux-
surface mesh in part of the plasma. Another consideration is that
while it is possible to vastly drop the resolution in the parallel
direction (i.e. the inter-plane spacing) with only a small loss in
accuracy, similar to conventional field-aligned grids, one must still
retain enough resolution in the perpendicular mesh to capture the
relevant physics of interest.

2.1. Comparison with the standard BOUT++ mesh

BOUT++[5–7] is a free and open source framework designed to
solve partial differential equations, with an emphasis on models
of magnetically confined plasmas. It has been used for a variety of
applications, from edge[8–10] and scrape-off layer[11,12] physics
in tokamaks, to turbulence in linear devices[13,14].

BOUT++ discretises space on a three-dimensional mesh, with
the dimensions labelled x, y and z. Typically, x is the ‘‘radial’’
direction, y the ‘‘poloidal’’, and z the ‘‘toroidal’’. The conventional
‘‘ballooning’’-style BOUT++ coordinate system[5,15], for ψ, θ, ζ
the usual orthogonal tokamak coordinates, is defined as:

x = ψ, y = θ, z = ζ −

∫ θ

θ0

νdθ, (1)

where ν is the local field line pitch, given by

ν(ψ, θ ) =
∂ζ

∂θ
=

B⃗ · ∇ζ

B⃗ · ∇θ
. (2)

By keeping z fixed and moving in y, the integral in z changes so
we need to move in ζ . This moves us along a field line. Essentially,
y is the coordinate along the field line while z picks out different
field lines. Because the physics of interest are expected to be field-
aligned, we are able to use a lower resolution in y and still resolve
the physical scales.

The metric tensor for this coordinate system is orthogonal only
at one y-location, meaning as we move in y, cross-terms appear
in the x-derivatives. It is possible to eliminate these cross-terms
by applying a shifted metric[1,16]. To do this, at each y-point, we
can shift z by the integral in Eq. (1), effectively moving us back
into non-field-aligned coordinates, performing the derivatives in
x, and then transforming back to the field-aligned coordinates.
This can be done using Fast Fourier Transforms (FFTs) which are
computationally inexpensive.

At either y-end of the gridwe need to shift in z in order tomatch
the field lines in a twist-shift boundary[17]. This needs to be done
regardless of whether or not we choose to use the shiftedmetric to
eliminate the x-derivative cross-terms.

In contrast to the standard BOUT++ coordinate system, the
FCI method explicitly does not use field-aligned coordinates. The
construction of the parallel derivatives in fact has themajor advan-
tages of a field-aligned system (reduced resolution in the parallel
direction) but allowsmore freedom in the choice of coordinates for
the perpendicular directions. For example, two possible choices of
coordinate system are tokamak coordinates:

x = ψ, y = ζ , z = θ, (3)

or cylindrical coordinates:

x = R, y = ζ , z = Z . (4)

FCI inherently employs a shifted metric, so no cross-terms ap-
pear in the perpendicular derivatives, simplifying the calculations,
and no twist-shift has to be performed.

2.2. Boundary conditions

2.2.1. Simple geometry
While FCI has already been implemented in other codes [1,2,4]

and used for plasma simulations [3], the boundaries of the sim-
ulation domain were either periodic, or treated very simply. The
problem is how to treat field lines correctly when they intersect
with or leave the simulation boundaries. For example, in Ref. [2],
the magnetic topology was a cylinder, and a mask was applied to
the simulation domain such that the equations were not solved
outside of a radius r . A different solutionwas used in Ref. [3], where
the simulation was periodic in two directions, and the component
of themagnetic field in the third directionwas damped close to the
edges, such that the resulting fieldwas tangential to the edge. Field
lines then never intersected the domain boundaries, and boundary
conditions could be applied in the perpendicular direction only.

Let us first consider a scalar field f on a simple, uniform, rectan-
gular grid with boundaries located at half the grid spacing outside
the first and last points in each of the grid dimensions. For any
given point in the grid where the field line traced from this point
intersects the boundary before intersecting the next perpendicular
plane, we need to be able to calculate parallel derivatives. This
situation is depicted in Fig. 2, where f2 is the value of the scalar field
at the point in question, f1 and f3 are the values at the intersection
points with the adjacent perpendicular planes in the negative and
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