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A common numerical task is to represent functions which are highly spatially anisotropic, and to solve
differential equations related to these functions. One way such anisotropy arises is that information
transfer along one spatial direction is much faster than in others. In this situation, the derivative of the
function is small in the local direction of a vector field B. In order to define a discrete representation, a set
of surfaces M; indexed by an integer i are chosen such that mapping along the field B induces a one-to-
one relation between the points on surface M; to those on M;, ;. For simple cases M; may be surfaces of
constant coordinate value. On each surface M;, a function description is constructed using basis functions
defined on a regular structured mesh. The definition of each basis function is extended from the surface
M along the lines of the field B by multiplying it by a smooth compact support function whose argument
increases with distance along B. Function values are evaluated by summing contributions associated with
each surface M;. This does not require any special connectivity of the meshes used in the neighbouring
surfaces M, which substantially simplifies the meshing problem compared to attempting to find a space
filling anisotropic mesh. We explore the numerical properties of the scheme, and show that it can be used
to efficiently solve differential equations for certain anisotropic problems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The technique proposed here is motivated by plasma physics
examples where particles travel much more easily along magnetic
field lines than in the perpendicular direction, so that in quantities
like fluid moments elongated structures are formed, aligned with
the field lines. In particular, the technique is designed to solve
problems in magnetic confinement fusion (MCF), where the field
lines wind around a central axis and may be closed, trace out
surfaces, or fill ergodic regions. An additional difficulty in MCF
problems is that the anisotropic structures are strongly curved,
because field lines are not straight (even in cylindrical coordi-
nates) over the length scale of the structures; the departure from
straightness is often considerably larger than the wavelength of the
structure in the directions of rapid variation. This paper outlines a
method for representing functions aligned along field lines which
are not necessarily aligned on nested surfaces or closed (such as
plasmas with an X-point), and for solving equations relating these
functions.

A variety of techniques to deal with representing these highly
anisotropic functions exist. The canonical technique is to define
a 3D mesh to fill the space of interest, with the mesh strongly
elongated along the field line. Achieving a very good alignment of
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the mesh along the field lines is in general quite a difficult meshing
problem, and for this reason many MCF physics codes work only in
the region where the field lines trace out a nested set of topologi-
cally toroidal magnetic surfaces: these are KAM tori [ 1] associated
with the field line Hamiltonian. In the tokamak core, for example,
because of near-axisymmetry, nested surfaces usually exist and
regular grids can efficiently be generated, or angular coordinates
may be employed in conjunction with a Fourier representation.
This is not the case for stellarator geometry or in the tokamak edge
region.

To avoid difficult meshing problems for the general case where
the region of interest is not filled by nested surfaces, it is desirable
to relax the requirement of mesh connectivity. The Flux Coordinate
Independent (FCI) approach [2-4], based on a finite difference
method, defines function values on nodes lying on a set of surfaces
M; which are taken to be surfaces of constant coordinate ¢. A node
x on surface M; can be mapped along the field direction B to find
image points, X on surfaces M;.,. Although these image points
will not in general lie on nodes on the surfaces M1, the function
may be evaluated at these points by interpolation. Given the values
of the function at points X, derivatives along the field direction
may then be determined.

Another way to relax the mesh connectivity constraint is via a
finite volume technique, where the volumes are extrusions of a
polygonal grid cell on one surface to the next, and a polynomial
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representation is chosen in each volume element; smoothness
constraints are then approximately imposed using a discontinuous
Galerkin approach. A hybrid method incorporating finite differ-
ences along the field line and the discontinuous Galerkin method
has also been investigated [5].

A natural method for representing the anisotropic functions of
interest is to change coordinates by defining a grid on a surface,
and extending this to a volume grid by defining an additional
coordinate parameterising the distance along the mapping (this is
known as the flux tube method [6] in MCF). Locally, this allows
for straightforward and efficient representation of the problem
anisotropy. However, the coordinate scheme becomes highly dis-
torted for mappings with strong shear or compression. The mesh
connectivity problem also resurfaces if the originating surface is
eventually mapped back onto itself, as at this point the represen-
tation on two non-aligned meshes must be combined in some way.

We propose a partially mesh-free method which we call FCIFEM
as it is a Finite Element Method translation of the FCI approach.
The method represents anisotropic functions using a compact-
support set of basis functions which are defined in a local set
of coordinates aligned with the mapping. The definition of the
set of basis functions is used to define weak forms of differential
equations, as in a standard Galerkin method. The philosophy is to
design a method which is robust and simple to implement, and
requires little manual user interaction, because it avoids complex
mesh generation tasks. The representation also provides a simple
way to neatly tackle a series of related problems with slightly
different configurations, generated, for example, when the field
generating the mapping varies slowly with time.

2. Definition of the finite dimensional representation

For the sake of simplicity, we consider a 3D volume labelled
by coordinates R, Z, ¢, and take the surfaces M of interest to be
surfaces of constant coordinate ¢, of value ¢; on surface M;.

Consider a continuous function Q : R*xR — R, that we will
refer to as the mapping, which takes a point X and a parameter s and
returns a point'y. We will use this function to define projections of
the 3D space, along curves locally aligned with the direction of the
anisotropy, onto each of the surfaces M;; we require Q(x, s); = s,
so that the projection associated with surface M; has parameter
s = ¢. We also require Q(x, x,) = X so points on the surface map
to themselves.

One way to generate such a mapping would be to consider the
action of a static flow field B displacing the position, leading to a
field line equation
dx
i B(x). (1)
If we followed a field line from position x until it had toroidal
coordinate s, where the field line was at the point y, we could
define the mapping as Q(x, s) = y. We will refer to this as an exact
mapping, which satisfies the equation

a
7Q(X+ €B, C)'e:O = 0 (2)
de

It is convenient to allow the mapping function to be more general,
however, and not necessarily exactly be the solution to this field
line mapping equation (or to any equation with a modified B),
either because we do not know the exact solution, or because
an approximate solution is numerically more desirable. This has
consequences for the quality of approximation, as the anisotropic
direction will not align exactly with the mapping direction, and
certain statements on convergence will be shown only for the
case of an exact mapping. For consistency properties to hold, the
mapping will be required to be one-to-one and at least of the same

¢, plane Z, plane

Fig. 1. The geometry of the approximate flow line mapping. Here, the mapping
from the point x = (R, Z, ¢) to the point (R, Z', o) on surface My is depicted, with
(R',Z") = Q(x, &), as well as the analogous mapping to surface M;. The dashed line
shows the field line from the point x, for which Eq. (2) holds exactly.

order of smoothness as the element functions defined in the next
paragraph. The geometry of this mapping is shown in Fig. 1.

The second element of the FCIFEM method to be chosen is the
representation on the planes M;. In general it might be helpful
to choose a general unstructured mesh, but for the purposes of
explanation and initial testing in this paper, we will use a simple
uniformly spaced Cartesian mesh on each plane M. In the inte-
rior region the representation of a scalar function of position is
defined as

G(R,Z,8) =) ijuxI[R(R,Z, ¢, &) — R
ijik
x 2 [2(R,Z, ¢, &) - Z]
X Q{ [; - {k] (3)

with compact support basis functions §2, a regular set of Cartesian
nodesii, j, k, and using the componentwise notation Q@ = (R, 2, ¢).
We will choose the functions £2 to be B-Spline basis functions for
the remainder as their properties are sufficient to ensure smooth-
ness and lowest order consistency (and this is similar to a finite
element approach used earlier in MCF codes [7,8]). An example
of the shape of a distorted 2D basis function (the coefficient of
¢ij« for some chosen i, j and k) is plotted in Fig. 2. To evaluate
the function value at point X, each term of the sum in Eq. (3) is
evaluated by calculating the mapping O(X, ¢x), and the product of
the basis functions can then be directly calculated. For a smooth
mapping, the overall representation smoothness depends on the
order of the spline. The arguments about convergence are most
simply made in the case with uniform nodes where R; = i4R,
Z; = jéZ and & = ké¢. The space spanned by these functions
will be denoted S.

3. Basic properties and consistency of FCIFEM

Although it is less obvious than in a standard Finite Element
formalism, these elements have a partition of unity property, and
can represent the unity function exactly. Substituting unity in the
spline coefficients, rearranging the sums and defining quantities
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