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a b s t r a c t

Tokamak plasmas are confined by amagnetic field that limits the particle and heat transport perpendicu-
lar to the field. Parallel to the field the ionised particles canmove freely, so to obtain confinement the field
lines are ‘‘closed’’ (i.e. form closed surfaces of constant poloidal flux) in the core of a tokamak. Towards,
the edge, however, the field lines intersect physical surfaces, leading to interaction between neutral
and ionised particles, and the potential melting of the material surface. Simulation of this interaction
is important for predicting the performance and lifetime of future tokamak devices such as ITER. Field-
aligned coordinates are commonly used in the simulation of tokamak plasmas due to the geometry and
magnetic topology of the system.However, these coordinates are limited in the geometry they allow in the
poloidal plane due to orthogonality requirements. A novel 3D coordinate system is proposed herein that
relaxes this constraint so that any arbitrary, smoothly varying geometry can be matched in the poloidal
plane while maintaining a field-aligned coordinate. This system is implemented in BOUT++ and tested
for accuracy using the method of manufactured solutions. A MAST edge cross-section is simulated using
a fluid plasma model and the results show expected behaviour for density, temperature, and velocity.
Finally, simulations of an isolated divertor leg are conducted with and without neutrals to demonstrate
the ion-neutral interaction near the divertor plate and the corresponding beneficial decrease in plasma
temperature.

© 2016 EURATOM. Published by Elsevier B.V. All rights reserved.

1. Introduction

The plasma in the core of a tokamak is confined by magnetic
fields that do not intersect any physical surfaces, but instead twist
endlessly to form closed surfaces of poloidal flux. The separatrix
marks the dividing line between these ‘‘closed’’ field lines and ones
that are ‘‘open’’ (i.e. ones that intersect the walls of the tokamak).
These open field lines are designed to intersect the divertor, which
is made to withstand the particle and heat flux that escapes the
core of today’s machines. In future devices such as ITER, however,
the power flux could potentially be too high (>10 MW/m2 ) for
any knownmaterial towithstand for prolonged periods of time [1].
By injecting neutral gas into the divertor region the plasma can be
driven into a detached regime where the majority of the plasma
power is radiated away before the plasma reaches the divertor, sig-
nificantly lowering the plasma power deposited on it. It is essential
to accurately simulate such detached plasmas to predict the heat
loads that will remain for these larger future devices [2]. For this,
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it is important to match the simulation grid to the geometry of the
divertor, which many codes currently do in the 2D poloidal plane,
but the 3D extent remains unoptimised to the tokamak geometry
due to the field-aligned nature of the plasma perturbations.

In tokamakplasmas,waves and instabilities are elongated along
the magnetic field, while the perpendicular structures are small
(on the order of the Larmor radius). Therefore, when simulating
an edge plasma it is desirable to also have a coordinate system
and grid that are aligned along the field. One can derive a set of
coordinates related to standard orthogonal tokamak coordinates
(ψ, θ, φ as shown in Fig. 1) where one coordinate is aligned to
the field. Such a coordinate system allows for resolution along the
field line to be sparser as is appropriate for the large structures,
while maintaining fine resolution perpendicular to the magnetic
field. The typical method for doing this is to keep the radial flux
coordinate ψ , but to replace the toroidal angle φ and the poloidal
angle θ with a shifted toroidal angle z and field-aligned coordinate
y, respectively [3,4]. Themathematical derivation of this is detailed
in the next section, but qualitatively this implies that ifψ and z are
held constant while y is increased, one will progress along the field
line on a helical path around the torus. The toroidal angle changes
as one moves in y, implying that these coordinates are no longer
orthogonal.
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Fig. 1. The geometry described by the coordinate system posed in Eq. (1).

Though this system solves the problem of resolution, it leaves
other problems un-addressed. Namely, the grid is restricted in
shape in the poloidal plane because theψ coordinate is orthogonal
to the poloidal projection of y. If this constraint is lifted by deriving
a new set of coordinates that are both field-aligned but also non-
orthogonal in ψ and y, there is freedom to define a grid that
matches the geometry of a specific tokamak in the divertor region.
This is especially useful for the simulation of neutrals because they
do not follow the field, so a wall-conforming grid is necessary. In
this paper, a novel coordinate system that allows such freedom is
presented, tested, and utilised for divertor plasma simulations.

An important distinction needs to be made between this new
systemand current coordinate systems in use in plasma edge codes
such as SOLPS [5] and EDGE-2D [6]. These codes are 2D, so though
they do allow non-orthogonality in the poloidal grid, they do not
have a field-aligned coordinate. The coordinate system derived
in this paper allows for 3D plasma edge simulation grids to be
defined with non-orthogonalities in the poloidal plane while also
maintaining a field-aligned coordinate.

1.1. Standard field-aligned coordinates

In the derivation of these coordinates, standard symbols for
tokamak geometry are utilised for the toroidal, poloidal, and radial
flux coordinates—φ, θ , and ψ respectively [7]. These coordinates
form a right-handed, orthogonal coordinate system as shown in
Fig. 1. The standard field-aligned coordinate system is defined as

x = ψ

y = θ

z = φ −

∫ θ

θ0

ν dθ
(1)

where the local field line pitch is given by

ν(ψ, θ ) =
∂φ

∂θ
=

B · ∇φ

B · ∇θ
=

Bφhθ
BθR

. (2)

with toroidal field Bφ , poloidal field Bθ , major radius R, and poloidal
arc-length hθ . Fig. 1 shows the geometry described by the coordi-
nate system in Eq. (1). It is important to notice that the shift added
to the z-coordinate causes the y-coordinate to be field-aligned. The
x-coordinate remains perpendicular to the poloidal projection of
the y-coordinate, limiting choice of poloidal geometry.

The contravariant basis vectors are then found by taking the
gradient of each coordinate, using ∇ = ∇ψ ∂

∂ψ
+∇θ ∂

∂θ
+∇φ ∂

∂φ
to

calculate
∇x = ∇ψ

∇y = ∇θ

∇z = ∇φ − ν∇θ − I∇ψ
(3)

with

I =

∫ θ

θ0

∂ν

∂ψ
dθ. (4)

The magnetic field can be written in Clebsh form [8],

B = ∇x×∇z =
1
J
ey (5)

so the coordinate system is field aligned. The contravariant and
covariant metric tensors are defined as

g ij
= ∇ui

· ∇uj

gij = ei · ej
(6)

where ei = J(∇uj
×∇uk) and ui indicates a particular coordinate.

Using the following identities

∇ψ = R |Bθ | ∇θ = |hθ |−1
∇φ = R−1 (7)

the contravariant metric tensor can be rewritten as

g ij
=

⎡⎣(RBθ )2 0 −I(RBθ )2

· · · h−2
θ νh−2

θ

· · · · · · I2(RBθ )2 + ν2h−2
θ + R−2

⎤⎦ . (8)

To calculate the covariant metric tensor, one must first find the
Jacobian of the system, which is given by

J−1
= ∇x · (∇y×∇z) (9)

thus

J =
hθ
Bθ
. (10)

The covariant metric tensor, defined as gij in Eq. (6), is then calcu-
lated as

gij =

⎡⎣I2R2
+ (RBθ )−2 Bφhθ IRB−1

θ IR2

· · · h2
θ + R2ν2 νR2

· · · · · · R2

⎤⎦ . (11)

These co- and contravariant metric tensors can be used within
simulations to perform operations, such as the parallel gradient,
∇∥ = b̂ · ∇ =

1
JB

∂
∂y , in the correct geometry [4]. It is important to

note that there is a singularity in this coordinate system wherever
Bθ = 0 (J → ∞ in Eq. (9)), such as at the X-point. The new
and improved coordinate system described in the next section still
contains this same limitation.

2. Flexible field-aligned coordinates

Near the divertor, this standard field-aligned system suffers
from the inability to match the physical geometry of the divertor
surface due to the orthogonality constraint in the poloidal direc-
tion. Fig. 2 shows a line of constant θ , which represents a grid in the
standard field-aligned coordinates. It is desirable to shift this line
so that it lies on the divertor plate, which requires a shift in the θ
coordinate. Though such a coordinate system is already utilised in
many plasma codes for 2D simulations, a new set of coordinates is
needed to allow a 3D simulation mesh to be aligned the divertor
(or any smoothly varying) geometry in the poloidal plane while
also maintaining field-alignment. To derive these coordinates, the
following system is defined by analogue to Eq. (1):

x = ψ

y = θ − yshift
z = φ − zshift

(12)

such that the shift in y (yshift) allows for the x-coordinate to be
alignedwith any arbitrary geometry in the poloidal plane. Likewise
the shift in z (zshift) enables the y-coordinate to follow an arbitrary
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