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We introduce an equation of motion approach that allows for an approximate evaluation of the time
evolution of a quantum system, where the algebraic work to derive the equations of motion is done by
the computer. The introduced procedures offer a variety of different types of approximations applicable
for finite systems with strong coupling as well as for arbitrary large systems where augmented mean-field
theories like the cluster expansion can be applied.

Program summary

Program Title: EoOM_main.frm

Program Files doi: http://dx.doi.org/10.17632/fjwxr28j3d.1

Licensing provisions: CC By 4.0

Programming language: FORM

Nature of problem: Quantum many-particle systems are an important subject in fundamental and applied
research. The calculation of the time evolution of such systems is a key aspect to investigate and
understand their properties. In most cases the Hilbert space that represents the quantum mechanical
system is too big to be processed by numerically exact methods and approximation methods have to be
used.

Solution method: The program automates an equation-of-motion technique that uses the generalized
Ehrenfest equation to derive the time evolution for expectation values of physical observables. The cluster
expansion is used to close the hierarchy of the equations of motion. The offered method allows for a variety
of different types of approximations to solve such problems with small numerical effort [1].
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1. Introduction

Such systems usually are hard to solve numerically exact (solu-
tion of the full von-Neumann-Lindblad equation) due to the large

Driven open quantum systems represent a broad class of
physical systems where an exact solution is not always feasible.
However, in many cases numerically exact solutions for the time
evolution of the density matrix are not required, and alternative
approximation methods can be applied. The focus of this work is on
driven open quantum systems, where we are interested in either
the dynamics of the system, or in its non-equilibrium steady state.

* This paper and its associated computer program are available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
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number of interacting particles and the size of the corresponding
Hilbert space. The cluster expansion (CE) and related theories are
approximation methods that have proven to be useful in various
applications in many-body quantum mechanics, e.g. to describe
quantum wells [1], BEC in an optical lattice [2], Rabi oscillations in
a quantum dot (QD)-cavity system [3], and sub- and superradiance
in semiconductor QD-lasers [4,5]. The specification of the method
is its comparatively small numerical effort, while the derivation of
the equations of motion (EoM) is a tedious algebraic task, especially
when higher orders of approximations are required. To overcome
this obstacle we introduce a symbolic manipulation program that
carries out the algebra, so that the user can focus on the physical
modeling and conceptional questions. The aim of this paper is to
share our experience in deriving EoM using the presented program
and allow the reader to apply the program to related problems. The
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program is written in rorM [6] and we recommend the extensive
and profound introduction [7].

The paper is structured as follows: In Section 2 we recapitulate
the basic mathematical operations and ideas behind the CE. To
this end we define the operators that are generic to the CE: time
derivative of an expectation values (EV) with enforced standard
order of the quantum mechanical operators, factorization of EVs
into correlation functions (CF), re-factorization of CF back to EV,
and the actual approximation that neglects certain CFs or EVs. In
Section 3 we outline the structure of our program. In Section 4 the
generic CE operators that are introduced in Section 2 are imple-
mented into rorM modules. Together with the general procedures
to derive EoM, we present an example program that is used to
study the threshold behavior of a high B-factor QD microcavity
laser. To demonstrate the ability of our approach we present in
Section 5 calculations up to the 10th order of the CE (EoM that
if derived using pen and paper are usually truncated at the 4th
order, for this kind of system [8]). A complete working program
that contains all procedures and the QD laser-model is available
for download http://dx.doi.org/10.17632/fjwxr28j3d.1.

2. Theory of cluster expansion

In this section we recapitulate the basic ideas of the CE and in-
troduce operators that represent the different calculation steps in
the CE. The computer procedures that we present in the following
sections are exact implementations of these CE operators. For a
more detailed introduction to this operator based formulation of
the CE we refer to [9,10].

In most cases, when encountering many-particle systems, one
is interested only in specific physical observables (EV/CF) and not
in the complete density matrix. The first step of the CE is to calcu-
late the time derivative using the generalized Ehrenfest equation
[11,12]
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for the EV of operator A with the system Hamiltonian H, and the
collapse operators L, with the rates A, representing the influ-
ence of the external bath in Lindblad form (cavity losses, sponta-
neous emission into non lasing modes, scattering, and dephasing)
[9,11,13]. For further calculations it is advisable to establish normal
order of the operators, after the application of the generalized
Ehrenfest equation, which is symbolized by : A:. As a combination
of both operations we introduce the operator : % : that derives the
EoM in normal order:

d
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To obtain the dynamics of a many-particle problem one encounters
a hierarchy of EoM that couples equations of O(N) to equations of
O(N + 1). By order O(N) we mean the number of particles that are
addressed by an EV or CF. In all practical cases the hierarchy has
to be truncated, which can be accomplished in two ways by the
truncation operator As, either by neglecting CFs of order larger
than N

Asny8(N + 1) = §(N), (3)
or by neglecting EVs of an order larger than N
Any (N+1) = (N). (4)

Which one of these two truncation schemes is more appropriate
depends on the physical system. We introduce two particular

examples where the truncation leads to the exact solutions: For
the ideal gas consisting of non-interacting particles one can set all
N-particle CFs larger than N = 1 to zero, i.e. apply As1). Whereas
an interacting two-particle-system is highly correlated, but Ay
truncates the hierarchy of EoM since all three particle EVs vanish
exactly in this system.

To neglect CFs one needs to factorize EVs into CFs, i.e. one
needs to express an EV by CFs and vice versa. In the following we
recapitulate the factorization according to [10] which is strongly
orientated on [ 14]. We define a set of indices I = {1, 2, ..., k} and
a product of Bosonic operators b' = bib, - - - by. P is a partition of
the set I meaning a set family of disjoint nonempty subsets ] of I
with Ujep] =1, and P; is defined as the set of all partitions of I. The
EV (b') is factorized into CFs §(b/) by applying the operator F

Fb') =Y []s0. (5)

PePp JeP

One can define the inverse operation to re-factorize CFs into EVs as
well by

Flsp)=> o []{¥). (6)
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with ¢p = (—1)*P)=1(#(P) — 1)!. To close the infinite hierarchy
of EoM of EVs induced by Eq. (1) for a system with a very large
number of photons (type I) interacting with a small finite number
of atoms (type II) we would have to apply F”Af;z“,\ﬂ’)FA{’M). Where
M is chosen according to the amount of atoms and N according
to the interaction strengths. The algebraically most costly part is
the factorization F and the inverse operation F~!. These operations
are the reason why higher orders in general cannot be derived
using pen and paper. To give an impression of the complexity
of the factorization problem we display the factorization of the
non-normalized photon-autocorrelation function (b'bh'bb) with
the Bosonic creation and annihilation operator bt and b

F(b'bTbb) = s(b*b'bb) + 28(b'hh)5(b)
+ 258(b'hb)8(b") + 8(bTb1)8(bb)
+ 8(bTb")8(b)? + 28(bTh)? + 8(bT)?8(bb)
+ 48(b")8(bTh)8(b) + 8(bT)*8(b)?. (7)

This example elucidates the high combinatorial complexity origi-
nating from the fact that every partition of the operators has to be
regarded. Additional work steps are required for the factorization
of EV of Fermionic operators, when the shift in sign has to be taken
into count for every commutation of the Fermionic operators.

3. rorM and general concepts

We use the symbolic manipulation system rorM version 4.1 (Jan
132014 64-bits) [6]. We assume that the reader is familiar with the
basic syntax and concepts of ForM. An introduction to ForM can be
found at https://www.nikhef.nl/%7eform/. The advantage of ForM
is that the user has full control over the working procedures, in
contrast to commonly used computer algebra systems. The calcula-
tions performed in our program can actually be regarded as a com-
bination of search and replace commands. Our implementation of
the CE consists of procedures that are the implementation the CE
operators introduced in the previous section, i.e. the Ehrenfest EoM
of EVs with established standard order of the operators ((: %A :)),
and the application of the factorization and truncation operators (F,
F 1, Any,svy), see Egs. (2)-(6). The basic working principle of the
program is illustrated in the flowchart depicted in Fig. 1. At first we
have to set up the problem by defining a Hamilton operator H and
the collapse operators L; in the dissipator in Lindblad form. The set
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