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a b s t r a c t

The structural evolution of alloys is affected by the elastic energy associated to eigen-stress fields.
However, efficient calculations of the elastic energy in evolving geometries are actually a great challenge
in promising atomistic simulation techniques such as Kinetic Monte Carlo (KMC) methods. In this paper,
we report two complementary algorithms to calculate the eigen-stress field by linear superposition (a.k.a.
LSA, Lineal Superposition Algorithm) and the elastic energy modification in atomistic interdiffusion of
alloys (the AtomExchange Elastic Energy Evaluation (AE4) Algorithm). LSA is shown to be appropriated for
fast incremental stress calculation in highly nanostructuredmaterials, whereas AE4 provides the required
input for KMC and, additionally, it can be used to evaluate the accuracy of the eigen-stress field calculated
by LSA. Consequently, they are suitable to be used on-the-fly with KMC. Both algorithms are massively
parallel by their definition and thus well-suited for their parallelization on modern Graphics Processing
Units (GPUs). Our computational studies confirm that we can obtain significant improvements compared
to conventional Finite Element Methods, and the utilization of GPUs opens up new possibilities for the
development of these methods in atomistic simulation of materials.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Eigen-stress fields are generated by the matching conditions of
different constituents inmaterial systems [1,2]. In particular, inho-
mogeneous crystal alloys with composition-dependent lattice pa-
rameter are subjected to intrinsic eigen-stress fields,which depend
on the spatial composition distribution. This distribution could be
rather complex in some cases, such as spinodal decomposedmetal
alloys [3] or alloy-based nanostructured semiconductors [4].

Predictive simulation of the time-evolution of material nanos-
tructure is critical in certain scenarios such as structural steels
in nuclear plants [5] or state-of-the-art integrated circuits during
front-end processing [6]. Such evolution is affected by the elas-
tic energy associated to eigen-stress fields [7,8]. However, efficient
calculations of the elastic energy in evolving geometries are actu-
ally a great challenge for promising simulation techniques such as
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Kinetic Monte Carlo (KMC) methods [9,10]. In most cases, numer-
ical solutions to this problem have been proposed by using Finite
ElementMethods (FEM) [11,12]. Nevertheless, the use of both KMC
methods and on-the-fly FEM calculations is nowadays computa-
tionally prohibitive. Indeed, FEM represents an approach for the
solution of a weak form and, hence, anymodification of the system
configuration implies the whole resolution of the resulting new al-
gebraic system of equations [13]. Consequently, the process would
be too time-consuming for estimating the ‘‘instantaneous’’ eigen-
stress field in evolving systems.

Eigen-stress fields may be also approximated in the context of
the linear elastic theory within the small strain limit [14]. Within
this framework, the final configuration coincides with the refer-
ence configuration (small displacement hypothesis) and the strain
is linear with stress [14]. Therefore, superposition can be applied.
In this work, we propose an algorithm based on the superposition
of the eigen-stress fields associated to elementary contributions.
Within the same context, the elastic energy modifications associ-
ated to atom-scale changes can be also estimated from stress field
modifications. Our proposal offers several advantages compared to
previous approaches [7,11,12,15,16]:
1. It allows incremental calculation of the stress field taking into

account only local modifications of the alloy structure. This
means higher computational efficiency.
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2. The balance between accuracy and efficiency can be tuned by
choosing the truncation radius for superposition.

3. It is massively parallel by its definition and, therefore, an addi-
tional performance gain can be obtained by using parallel pro-
cessors.

These advantages together offer a great opportunity to have a
very efficient algorithm to calculate the elastic energy modifica-
tions related to atomistic diffusion events,which are an input to the
KMC algorithm for every attempt of interdiffusion event (i.e. after
every few Monte Carlo steps).

The paper is structured as follows. After this introduction,
Section 2 describes the underlying linear superposition model
and the method to calculate the energy modifications associated
with the eigen-stress. Based on this model, Section 3 shows the
corresponding algorithms and their parallelization on modern
processors, whereas Section 4 shows the performance and quality
evaluation of our algorithm. Finally,we outline the conclusions and
some directions for future work.

2. Model

Let us consider an A1−XBX binary alloy with orthotropic crystal
structure, where X is the molar fraction of B atoms, which
is a dimensionless measure of alloy composition. Assuming a
linear dependence of lattice parameter a with alloy composition
(Vegard’s law), the lattice parameter can be expressed as:

a(X) = a(0) + (a(1) − a(0))X, (1)

where a(0) and a(1) are the lattice parameters of the pure
constituents of the alloy. The maximum lattice mismatch in
the alloy is ϵmax = (a(1) − a(0))/a(0.5). The spatial composition
dependence is accounted dividing the simulation domain into a
nanometer-sized uniform cubic mesh. We denote by n = (nx,
ny, nz) the vector index of each mesh element, with nx, ny, nz
being integer numbers.Within an atomistic framework, eachmesh
element has an integer number of alloy atoms, Nat ≃ CatΩ , where
Cat is the atom density of the alloy and Ω is the volume of each
mesh element. Likewise, it verifies Nat = NA + NB, with X =

NB/Nat , where NA and NB are, respectively, the integer number of A
and B atoms in each mesh element. If moderated lattice mismatch
(|ϵmax| ≪ 1) and low defect concentration are assumed, Nat can
be approximated to be constant in all mesh elements. Usual mesh
spacing for atomistic simulations are within the nanometer scale
and Nat is typically ranging from few tens to several hundreds.

In this context, the minimum composition variation in an
element will be given by:

δX =
1
Nat

, (2)

and, thus, the elementary eigen-expansion ratio, related to a com-
position change of δX will be:

δϵ =
ϵmax

Nat
. (3)

Let us consider now the tensor stress field δ ¯̄σ(n) generated by an
elementary eigen-expansion δϵ in the reference mesh-element lo-
cated at (0, 0, 0)over an infinite (andotherwise unstressed andho-
mogeneous) domain. We will refer to δ ¯̄σ(n) as elementary stress
field. An analytic solution for δ ¯̄σ(n) could be found if the expanded
element would have spherical geometry and the material would
be isotropic. However, no analytic solution is available in our case,
where the expanded mesh element is cubic (instead of spherical)
and thematerial is orthotropic (instead of isotropic). Alternatively,
a numerical estimation of δ ¯̄σ(n) can be obtained using FEM. No-
tice that themagnitude of the components of the elementary stress

Fig. 1. Schematics of the contribution to the stress ¯̄σ in a mesh element n, induced
by an elementary composition variation δX atmesh element l. The shadowed region
symbolizes the orthotropic stress-field δ ¯̄σ related to this δX . The local contribution
on element n depends on the relative position vector k = n − l.

tensor δ ¯̄σ(n) are inversely proportional to the mesh element vol-
ume Ω . Hence, the product Ωδ ¯̄σ(n) is independent on the mesh
spacing and it could be estimated ‘‘once and forever’’ for each ma-
terial.

Consequently, for a non-uniform X(n) alloy composition, the
total eigen-stress field ¯̄σ(n) may be expressed, considering elastic
linear superposition, as (see Fig. 1):

¯̄σ(n) =


l

X(l) − ⟨X⟩

δX
δ ¯̄σ(n − l). (4)

Eq. (4) accounts for the contribution ofmesh element l on the stress
field at themesh elementn. In this sense,n−l represents the vector
index of each element relative to the location of the elementary
expansion (Fig. 1). Denoting ⟨X⟩ the average alloy composition
of the system, the magnitude of the eigen-stress field due to
element l is proportional to the difference X(l) − ⟨X⟩. Under the
above mentioned assumptions (and in absence of applied external
forces), a mesh element with alloy composition equal to ⟨X⟩ does
not contribute to the stress field. Sincewe consider a bulkmaterial,
periodic boundary conditions are appropriate and, hence, cyclic
values are adopted for the vector n − l in terms of the considered
domain.

If the faraway elementary contributions could be neglected, the
sum in Eq. (4)may be truncated to small values of ||n − l||, with || ||

being a norm of the integer vector. For convenience, the relative
vector index k = n − l can be adopted (see Fig. 1) and, then,
Eq. (4) can be rewritten as:

¯̄σ(n) =


k

||k||≤kmax

X(n − k) − ⟨X⟩

δX
δ ¯̄σ(k). (5)

For simplicity, the norm we use is ||k|| = max{|kx| ,
ky , |kz |}.

Therefore, the condition ||k|| ≤ kmax corresponds to a cube with
(2kmax+1)3 mesh elements. Notice that, in previous equations, the
elementary stress tensor δ ¯̄σ(k) represents an input of the model
and it can be extracted from the previously calculated Ωδ ¯̄σ(k).

Crystal alloy evolution is known to be driven by mobile
native defects [17]. Assuming low defect concentration, alloy
interdiffusion and precipitation have been modeled as a sequence
of defect-driven exchanges of pairs of A–B atoms of neighboring
mesh elements [18,19]. A great computational advantage of the
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