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a b s t r a c t

The plane wave method is most widely used for solving the Kohn–Sham equations in first-principles
materials science computations. In this procedure, the three-dimensional (3-dim) trial wave functions’
fast Fourier transform (FFT) is a regular operation and one of the most demanding algorithms in terms of
the scalability on a parallel machine. We propose a new partitioning algorithm for the 3-dim FFT grid to
accomplish the trade-off between the communication overhead and load balancing of the plane waves.
It is shown by qualitative analysis and numerical results that our approach could scale the plane wave
first-principles calculations up to more nodes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the context of Density Functional Theory (DFT), solving the
Kohn–Sham equation is themost time-consuming part of the first-
principles materials science computations [1–3]. The plane wave
method, which is a widely used numerical approach [4], could lead
to a large-scale dense algebraic eigenvalue problem. This problem
is usually solved by iterative diagonalization methods such as
Davidson’s [5], RMM-DIIS [3], LOBPCG [6], Chebyshev polynomial
filtering subspace iteration [7], etc. The elementary operation
of the iteration methods is the matrix–vector multiplication.
Since the large-scale dense matrix is not suitable for explicit
assembly, we realize the matrix–vector multiplication by applying
the Hamiltonian operator on trial wave functions. The local term of
the effective potential is one part of the Hamiltonian operator. In
order to compute its action in a lower time complexity, we perform
3-dim FFT twice on one trial wave function in each matrix–vector
multiplication.

There are three features to make the trial wave function’s
FFT one of the most demanding algorithms to scale on a parallel
machine. The first is themoderate sized FFT grid rather than a large
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one. The ratio of computation to communication of the parallel
3-dim FFT is of order logN where N , the single dimension of the
FFT grid, is usually O(102) in most first-principles calculations
of bulk materials. The second is the accumulated communication
overhead led by many execution times corresponding to a
number of wave functions. Thousands of FFTs may be executed
at each step of iterative diagonalization. The third is the all-to-all
communication required by the data transposes. This could limit
the parallel scaling due to the large number of small messages in
the network resulting in competition as well as latency issues.

It has already been recognized that making fewer and larger
messages can speed up parallel trial wave functions’ FFTs. The
hybrid OpenMP/MPI implementation [8,9] can lead to fewer and
larger messages compared to a pure MPI version. And a blocked
version [9] performs a number of trial wave functions’ FFTs at the
same time to aggregate the message sizes and reduce the latency
problem.

In first-principles calculations, we should consider not only
the parallel scaling of trial wave functions’ FFTs, but also the
load balancing of intensive computations on the plane waves that
expand the wave functions. The workload of these computations
are inhomogeneously distributed on a standard 3-dim FFT grid.
Thus a greedy algorithm is usually used to optimize the load
balancing. However, this algorithm results in global all-to-all
communications across all the processors, thus the latency
overhead would grow in proportion to the number of processors
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and might contribute substantially to the total simulation time.
Haynes et al. [10] present a partitioning approach for the 3-dim
FFT grid that minimizes the latency cost. Their method depends
critically on the Danielson–Lanczos Lemma [11] and requires
a particular data distribution, which limits the possibilities to
improve the load balancing of the plane waves.

In this paper, we propose a new partitioning method for
the 3-dim FFT grid, with which we need independent local all-
to-all communications for each data transpose rather than one
global all-to-all communication. With this communication pattern
preserved, we develop the method to improve the load balancing
by adjusting the data distribution among working processors. By
numerical examples, we show that although its load balancing is
not as perfect as that of the greedy algorithm, the new approach
can bemore favorable for parallel scaling by making the fewer and
largermessages. Hence,we are allowed to accomplish the trade-off
between the load balancing of the planewaves and communication
overhead in the trial wave functions’ FFTs. And such a trade-
off could scale the plane wave first-principles calculations up to
more nodes. With the proposed partitioning method, we design a
compact parallel 3-dim FFT to reduce the amount of calculations
and passing messages without loss of accuracy.

The rest of this paper is organized as follows. In Section 2,
we explain the elemental role of trial wave functions’ FFTs in
the plane wave method. In Section 3, we introduce the greedy
algorithm for load balancing of the plane waves and analyze the
resulting communication cost. In Section 4, we describe the new
partitioning algorithms and implementations. In Section 5, we
show the numerical results. The last section gives concluding
remarks.

2. The role of trial wave functions’ FFT

In this section, we explain the elemental role of trial wave
functions’ FFTs in solving the Kohn–Sham equation using a plane
wave basis set.

In the pseudopotential (norm-conserving [12] or ultrasoft [13]
pseudopotential) setting or the projector augmented wave (PAW)
[14,15] approach, the pseudo wave function Ψ̃i satisfies the
Kohn–Sham equation which looks like

−
1
2
∆ + Vloc + Vnl


Ψ̃i = ϵiSΨ̃i, (1)

where −
1
2∆ is the kinetic energy operator, Vloc the local potential,

Vnl the nonlocal term, and S the overlapping operator. In the
case of the norm-conserving pseudopotential, S could simply be
interpreted as the identity operator. In this manuscript, we refer to
the pseudo wave function simply as the wave function.

We use always the periodic boundary condition and expand the
wave function in plane waves:

Ψ̃nk(r) =


G

Ψ̃nk(G) e−ı(k+G)·r, (2)

where the k’s are vectors sampling the first Brillouin zone, n is an
index of the energy level with given k, and G’s are the reciprocal
lattice vectors. The expansion (2) only includes the plane waves
satisfying

|k + G| <

2Ecut ≡ Gcut. (3)

In the plane wave method, the Hamiltonian matrix is not as-
sembled explicitly. Instead, iterative diagonalization techniques
are employed together with the implicit matrix–vector multipli-
cation that is realized as the action of the Hamiltonian operator on
the trialwave functions. It is noticed that the local potential is diag-
onal in the real space. In order to obtain efficiently the action of the

Fig. 1. A two dimensional sketch of thewrap-around errors in the reciprocal space.
The wave function |Ψ ⟩ is sampled within a sphere with radius Gcut (the innermost
circle 1). The charge density ρ and the local potential Vloc are defined inside a
sphere with radius 2Gcut (circle 2). We would require a sphere with radius 3Gcut to
accurately estimate the operation of the local potential on the trial wave function.
If we apply a smaller FFT grid with only 2Gcut , the artificial wrap-around error
between 2Gcut and 3Gcut would occur and be folded back into circle 2 due to the
periodicity. Hence, it is sufficient to approximate the wave functions correctly in
circle 1.

local potential on the trial wave function, we should first transform
Ψ̃nk(G) to the real space representation Ψ̃nk(r) by one FFT, multi-
ply it with the local potential term, and then transform the product
back to the reciprocal space. Consequently, two 3-dim FFTs are re-
quired by each action on a trial wave function.

3. The load balancing issue and the greedy algorithm

3.1. The load balancing issue

Asmentioned in the previous section, the planewaves are trun-
cated at cut-off radius Gcut. Since charge density ρ is the sum of
squares of the wave functions, the corresponding cut-off radius for
the charge density is 2Gcut. The cut-off radius of the local potential
Vloc can be regarded the same as that of ρ, because Vloc is a func-
tional of ρ. Thus, the cut-off radius of VlocΨ̃nk is 3Gcut. As illustrated
in Fig. 1, it is sufficient to take the FFT grid with only 2Gcut in order
to prevent the wave functions from the wrap-around error.

On one hand, the operation of the local potential on trial
wave functions are computed with 3-dim FFTs on the standard
grid determined by 2Gcut. On the other hand, we carry out some
intensive computations, the time complexities of which are in
proportion to the number of plane waves within the cut-off radius
Gcut, including the assembly of the matrix on the subspace, the
orthogonalization of wave functions, and the actions of other
parts of the Hamiltonian operator. And the workload of these
calculations are not homogeneously distributed on the FFT grid.
Therefore, one should consider not only the parallel scaling of
FFTs, but also the load balancing issue of the intensive plane wave
computations.

3.2. The greedy algorithm

One 3-dim FFT consists of three successive sets of 1-dim FFTs
along the x, y and z directions. For each set of 1-dim FFTs, the
data layout should guarantee that each processor holds complete
columns of data along the FFT direction. Therefore, there are three
data layouts of the 1-dim FFTs along the x, y and z directions. We
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