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Abstract

The measurement of distance is one of the key steps in the unsupervised learning process, as it is through these distance

measurements that patterns and correlations are discovered. We examined the characteristics of both non-Euclidean norms and

data normalisation within the unsupervised learning environment. We empirically assessed the performance of the K-means,

neural gas, growing neural gas and self-organising map algorithms with a range of real-world data sets and concluded that data

normalisation is both beneficial in learning class structure and in reducing the unpredictable influence of the norm.
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1. Introduction

The measurement of distance is fundamental in the

unsupervised learning process as most learning

techniques require the calculation of a measure of

similarity (respectively, dissimilarity) between train-

ing examples. Within the artificial neural network

unsupervised learning community, the choice of

distance measure often seems quite arbitrary. Inspired

by a claimed improvement in nearest neighbour search

and K-means class recovery accuracy when using

fractional norms [1], we empirically examined the

characteristics of non-Euclidean norms within the

unsupervised learning framework. The claimed

improvement arising from the use of fractional norms

was therefore the motivation for this work.

Within the data driven sciences, the benefits of data

pre-processing, such as normalisation or standardisa-

tion, are well known. However, in many fields of

research these benefits are often overlooked and our

work reported in this paper examines the conse-

quences of combining data normalisation and non-

Euclidean norms. The results presented here are an

extension of our work initially reported in Ref. [2].

The remainder of this paper is organised as follows: In

Section 2, we recapitulate the Minkowski metric.

Section 3 describes data normalisation. Section 4

describes the synthetic and real-world data sets
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examined in this work. In Sections 5–7, we describe

the results of nearest neighbour search, K-means

clustering and clustering using three neural-inspired

clustering algorithms, and finally, Section 8 presents

our conclusions.

2. The Minkowski metric

A family of distance measures are the Minkowski

metrics [3], where the distance between the d-dimen-

sional entities i and j (denoted by jjijjjr) is given by:

jji jjjr ¼
�Xd

k¼1

jxik � x jkjr
�1=r

(1)

where xik is the value of the kth variable for entity i, xjk

the value of the kth variable for entity j and r > 0.

The most familiar and common distance measure is

the Euclidean or L2 norm—a special case of the

Minkowski metric where r = 2. Human understanding

and experience makes us familiar with the results

when applying L2 measurements (to a problem space

on a Euclidean plane), but the application of non-L2

norms can lead to some counter-intuitive results.

Consider the unit length loci from a point when plotted

in the Euclidean plane with an Lr norm. In this

Euclidean 2-space, the L2 norm traces a circle, the

fractional (r < 1) norms trace a hypoellipse, the L1

norm trace a straight line and the higher order norms

(r > 2) produce hyperelliptical traces. See Fig. 1 for a

plot of these loci in the first quadrant.

Consider the three feature vectors a = (0, 1), b =

(1, 0) and c = (7, 0). Let jjxyjjr be the Lr distance

between vectors x and y. Generating a measure of

dissimilarity with the L2 norm, we find ðjjabjj2 ¼ffiffiffi
2
p
Þ< ðjjbcjj2 ¼ 6Þ. However, if we generate a

measure of dissimilarity with the L1/3 norm, we

now find (jjabjj1/3 = 23) > (jjbcjj1/3 = 6). In a learning

context when measuring dissimilarities between two

entities, the use of a fractional norm reduces the

impact of extreme individual attribute differences

when compared to the equivalent Euclidean measure-

ments. Conversely, the higher-order norms emphasise

the larger attribute dissimilarities between the two

entities and taken to the limit, L1 reports the distance

based on the single attribute with the maximum

dissimilarity. To further illustrate these points,

consider the following feature vectors a = (3, 2, 1,

40) and b = (3, 2, 1, 60), and let jjxjjr be the Lr distance

between vector x and the origin. Table 1 shows the

distances of vectors a and b from the origin measured

with the L2 and L1/3 norms. The L2 norm clearly

emphasises the larger attributes. The L1/3 norm reports

the relative distance from the origin to the vectors a

and b in line with intuition—that is, b is further from

the origin than a. However, the ratio of the jjxjj1/3

distances is less than the ratio of the equivalent jjxjj2
distances demonstrating how the fractional norm can

reduce the effect of large differences in individual

attributes.

3. Normalisation

Data normalisation (or ranging) is the linear

transformation of data to within the range [0, 1] [3].

Normalisation was one of seven data pre-processing

methods examined in Ref. [4], where the influence of

data pre-processing on the recovery of class structure
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Fig. 1. First quadrant plot of unit length loci from the origin with

various Lr norms.

Table 1

The distance of vectors a and b from the origin measured with L2 and

L1/3

Norm jjajjr jjbjjr jjajjr/jjbjjr
L2 40.18 60.12 1.5

L1/3 361.27 441.94 1.2

The ratio of the L1/3 distance between the two vectors is less than the

ratio of the L2 distance, demonstrating how the fractional norm

reduces the effect of the large feature vector attribute differences.
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