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a b s t r a c t

With the developed ‘‘extended Monte Carlo’’ (EMC) algorithm, we have studied the depinning transition
in Ising-type latticemodels by extensive numerical simulations, taking the random-field Isingmodel with
a driving field and the driven bond-diluted Ising model as examples. In comparison with the usual Monte
Carlo method, the EMC algorithm exhibits greater efficiency of the simulations. Based on the short-time
dynamic scaling form, both the transition field and critical exponents of the depinning transition are
determined accurately via the large-scale simulations with the lattice size up to L = 8912, significantly
refining the results in earlier literature. In the strong-disorder regime, a new universality class of the
Ising-type lattice model is unveiled with the exponents β = 0.304(5), ν = 1.32(3), z = 1.12(1), and
ζ = 0.90(1), quite different from that of the quenched Edwards–Wilkinson equation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Driven by a constant force in the presence of the quenched
disorder, the interface moves with a steady-state velocity, while
it is pinning when the force is weak compared to the ran-
dom noise. Between them, there exists a second-order dy-
namical phase transition, called as the ‘‘depinning transition’’
[1–8]. For several decades, the depinning transition has been
the focus of the experimental and theoretical research, which
are common to a wide variety of phenomena, including the
liquid invasion in porous media [9], the contact line in wet-
ting [10], the vortices in type-II superconductors [11,12], the
charge-density waves [13], the fracture propagation [14,15],
the dislocation dynamics in crystal plasticity [16], and the
domain-wall motions in ferromagnetic and ferroelectric materials
[17–20]. Practically, understanding the fundamental mechanism
of the depinning transition plays an important role in predicting
and controlling themotions of themagnetic domainwalls in nano-
materials [21–23], thin films [8,24], and semiconductors [20,25],
which is key to the realization of the new classes of potential non-
volatile storage-class devices [26,27].

Theoretical approaches to the domain-wall dynamics are typ-
ically based on the phenomenological models, such as the Ed-
wards–Wilkinson equation with quenched disorder (QEW) and its
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variants [28–31]. With these equations, the domain wall in a two-
dimensional system can be effectively described by a single-valued
elastic string, and the static and dynamic critical exponents of the
depinning transition, i.e., β, ν, z, and ζ , are measured numerically,
though the discrepancies are still large in the literature [32–35]. For
example, it reaches nearly 30 percent in the velocity exponent β .
Recently, extensive simulations of the QEW at the depinning tran-
sition have been performed with a lattice size up to L = 8192
[28]. Based on the short-time dynamics method, the universality
class of the depinning transition is identified with the exponents
β = 0.245(6), z = 1.433(7), ζ = 1.250(5), and ν = 1.333(7),
which are robust under the changes of the disorder realization in-
cluding the random-bond and random-field characters. Moreover,
the scaling relation β = ν(z − ζ ) is revealed, consistent with the
prediction of the functional renormalization group theory [36,37].
However,most experiments reported that the roughness exponent
is ζ ≈ 0.6–0.9 [1,15,31,38,39], smaller than that of the QEW equa-
tion, suggesting that detailed microscopic structures and interac-
tions of real materials should be concerned.

Besides, the dynamical behaviors of the domain walls in ferro-
magnetic nanowires are also investigated via the micromagnetic
simulations with the Landau–Lifshitz–Gilbert (LLG) equation de-
picting the time evolution of the orientation of the magnetiza-
tion distribution,m(r⃗, t) [40–42]. However, the LLG equation is too
complicated to be simulated for the depinning transitions in ul-
trathin ferromagnetic or ferroelectric films. The Ising-type lattice
models are then introduced with much simpler microscopic struc-
tures and interactions [43–46]. In this paper, we use the random-
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field Isingmodel with a driving field (DRFIM) and the driven bond-
diluted Ising model (DBDIM) as examples. For a long time, it has
been invariably stated that the QEW equation and DRFIM model
belong to the same universality class [43,46,47]. However, signif-
icant deviations of the critical exponents have been reported in
recent works [48,49], which could not be ruled out by statistical
errors. It was argued that the difference may be induced by the in-
trinsic anomalous scaling and spatial multiscaling of the DRFIM at
the depinning transition. Unfortunately, a weak dependence of the
critical exponents on the strengths of the random fields is found
in the disorder regime ∆ ∈ [0.8, 2.3] [50]. Hence, it remains am-
biguous that the depinning transition of the DRFIM belongs to a
new dynamic universality class or it only has a correction to the
universality class of the QEW equation due to the influence of the
first-order phase transition occurring at ∆ ≤ 1. To solve this issue,
we will identify the critical exponents of DRFIM in the regime of
the strong disorder ∆ ≫ 1 in this article, and carefully examine
the hyperscalings β = ν(z − ζ ) and ν = 1/(2 − ζ ) proposed in
the QEW universality class.

Early studies of the depinning transition were always focused
on the steady-state velocity v(L) of the domain wall [4,35,43,51].
Suffering from severe critical slowing down, however, it is quite
arduous to obtain the exact transition field Hc and critical
exponents. Adopting the short-time scaling form [52,53], both
the static and dynamic exponents β, ν, ζ , and z can be easily
and accurately determined from the nonsteady relaxation of the
domain interface since the spatial correlation length is short
[28,33,48]. Due to the limitation of the computing resources,
however, the system size and simulation time are insufficient in
previous work for the depinning transition in the DRFIM, which
are up to L = 1024 and tmax = 2000 [48,50], much smaller than
those in the QEW equation, L = 8192 and tmax = 8000 [28]. It
may result in a systematic error in the determination of the critical
driving field Hc . Accordingly, larger spatial and temporal scales are
needed in the simulations to obtain more precise results for the
depinning transition in the DRFIM.

In this paper, an optimized Monte Carlo method is developed,
termed as the ‘‘extended Monte Carlo’’ (EMC) algorithm. Adopting
the EMC, much smaller time of the Central Processing Unit (CPU)
is taken for the depinning transition, in comparison with that
of the usual Monte Carlo method. By extensive simulations, the
transition point and critical exponents of the DRFIM are then
accurately determined for various strengths of the quenched
disorder, and a new universality class is unveiled. In addition, the
depinning transition in another Ising-type lattice model, DBDIM,
is also investigated for comparison. In Section 2, the models, EMC
algorithm, and scaling analysis are described, and in Section 3,
the numerical results are presented. Finally, Section 4 includes the
conclusion.

2. Methodology

2.1. Model

The DRFIM is one of the simplest demonstration to study
the depinning transition in the disorder media with microscopic
structures and interactions. The Hamiltonian of the DRFIM can be
written as

H = −J

⟨ij⟩

SiSj − H


i

Si −


i

hiSi, (1)

where Si = ±1 is the classical Ising spin of the two-dimensional
rectangle lattice with 2L × L, the random field hi is uniformly
distributed within an interval [−∆, ∆], and H is a homogeneous
driving field. An unbounded Gaussian distribution of the random
field hi leads to similar results, but the fluctuations induced by the

Fig. 1. Time evolution of the spin configurations under the uniform distribution of
the random fields. The black andwhite correspond to the spin up (Si = 1) and down
(Si = −1), respectively, and the stars denote the activated spins within the domain
interface. As the time t grows, overhangs and islands are created.

disorder are stronger, and numerical simulations are technically
more complicated. Hence, we concentrate on the bounded uniform
distribution of hi in this paper. The initial state that spins are
positive in the sublattice on the left side and negative on the right
side, is used to build a perfect domain wall, also referred to as a
‘‘domain interface’’, in the y direction. The direction perpendicular
to the domain interface is then set to the x axis. Antiperiodic
and periodic boundary conditions are used in x and y directions,
respectively. To eliminate the pinning effect irrelevant for disorder,
we rotate the square lattice such that the initial domain wall
orients in the (11) direction of the square lattice, as shown in Refs.
[43,48,51,54].

After preparing the initial state, a usual Monte Carlo method
is adopted with standard one-spin flips in the simulations. Simply
speaking, we update each spin with the following procedure. First,
we randomly choose a single spin Si in the two-dimensional lattice.
The change of the total energy is then calculated after we flip the
spin Si → S ′

i ,

δE = H(Si) − H(S ′

i )

= (S ′

i − Si)


−J


j

Sj − H − hi


. (2)

Only when δE < 0, the flip is accepted, otherwise the spin
state Si remains. A Monte Carlo time step (MCS) is defined by 2L2
single-spin updates. As time evolves, the domain wall moves and
roughens, while the bulk, i.e., spins far away from the domain
interface, keeps invariant. As shown in Fig. 1, the time evolution
of the spin configuration is displayed with the black and white
squares, corresponding to Si = ±1, respectively. Complicated
spin structures are found nearby the domain interface, such as
overhangs and islands at the time t = 1000 MCS. Where
overhanging profilemeans that the front of the domainwall cannot
be directly described as a single-value function of the coordinate y,
which has been observed in experiments for magnetic materials
[38,55].

According to literatures [1,38,49], there are many different
ways to define the domain interface. In this paper, we adopt a
simple and popular definition based on the magnetization [43,46,
47,51]. Denoting a spin at site (x, y) by Sxy(t), a microscopic height
function of the domain interface is introduced,

h(y, t) =
Lx
2

[m(y, t) + 1], (3)
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