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a b s t r a c t

In Monte Carlo integration an accurate and reliable determination of the numerical integration error is
essential. We point out the need for an independent estimate of the error on this error, for which we
present an unbiased estimator. In contrast to the usual (first-order) error estimator, this second-order
estimator can be shown to be not necessarily positive in an actual Monte Carlo computation. We propose
an alternative and indicate how this can be computed in linear time without risk of large rounding errors.
In addition, we comment on the relatively very slow convergence of the second-order error estimate.

© 2016 Elsevier B.V. All rights reserved.

1. Monte Carlo integration and its errors

It does not need to be stressed that in numerical integration,
including Monte Carlo (MC) integration [1], determination or
estimate of the integration error made is essential. The Central
Limit Theorem (CLT) practically ensures that if the numberN ofMC
points is sufficiently large the numerical value of the MC integral
– itself a stochastic variable – will have a Gaussian distribution
around the true integral value, with a standard deviation that can
itself also be estimated: this is the first-order error. The results of
MC integrations are therefore usually reported as

‘‘result’’ ± ‘‘error’’

with the understanding that the ‘‘error’’ value quoted is the
Gaussian’s standard deviation. In this way one can, for instance,
assign confidence levels when comparing the integration result
with a measurement. However, since the Gaussian distribution is
quite steep, a modest change in the value of the error can change
the confidence levels considerably. It is therefore preferable to also
have a second-order error that estimates how well the first-order
error was computed. The better way to report the result of a MC
integration is then

‘‘result’’ ± (‘‘first-order error’’ ± ‘‘second-order error’’) .

A first attempt to implement such a method was presented in [2].
However, in that paper no explicit form of the second-order
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error estimator was presented, nor were its numerical stability
properties and its convergence behaviour discussed: also it was
(wrongly) stated that the second-order error was the square root
of the estimator, while it ought to be the fourth root. The present
paper addresses and corrects these issues. In what followswe shall
arrive at an estimator for the second-order error that, like the first-
order one, can be evaluated in linear time i.e. at essentially no extra
CPU cost.We shall also discuss several of its numerical aspects, and
suggest an improvement.

2. Error estimators

Wewill start by defining somemathematical tools.We consider
an integral over an integration region Γ of an integrand f (x), with
x ∈ Γ . We have at our disposal a set of MC integration points
xj , j = 1, 2, . . . ,N , assumed to be iid (Independent, Identically
Distributed) with a probability distribution P(x) in Γ . We define

Jp =


Γ

dx P(x) w(x)p, w(x) =
f (x)
P(x)

, (1)

so that J1 =

dx f (x), the integral we want to compute. The

numbers wj ≡ w(xj) are called the weights of the points. We see
that Jp is nothing but the expectation value of w(x)p:
wp

= Jp. (2)

Furthermore, we define the following multiple sums:

Sp1,p2,...,pk =

N
j1,2,...,k=1

wj1
p1 wj2

p2 · · · wjk
pk (3)
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with the condition that the indices j1,2,...,k are all different. As an
example, the sum S1,1 does not contain N2 but N2

= N2
−N terms.

The falling powers are defined by

Np
= N!/(N − p)! = N(N − 1)(N − 2) · · · (N − p + 1). (4)

The simple sums Sp can be evaluated in linear time (that is, using
N additions), but a multiple sum Sp1,...,pk needs time of the order
Nk. In calculating estimators we therefore want to use only simple
sums. On the other hand, only the multiple sums have a simple
expectation value:
Sp1,p2,...,pk


= Nk Jp1 Jp2 · · · Jpk . (5)

We can relate simple and multiple sums to one another by the
following obvious rule:

Sp1,p2,...,pkSq = Sp1+q,p2,...,pk + Sp1,p2+q,...,pk + · · ·

+ Sp1,p2,...,pk+q + Sp1,p2,...,pk,q. (6)

We are now ready to construct the various estimators, starting
with the well-known MC formulæ for clarity. For the integral we
have

E1 =
1
N
S1, (7)

since ⟨E1⟩ = J1; moreover we see that this estimator is unbiased.
For the variance of E1 we have
E12

− ⟨E1⟩2 =

1
N2


S2 + S1,1


− J12

=
1
N


J2 − J12


=

1
N2

⟨S2⟩ −
1

N2N


S1,1


(8)

so that the appropriate estimator is

E2 =
S2
N2

−
S1,1
N2N

=
1

N2N
Σ2, Σ2 = N S2 − S12. (9)

The latter form is more suited to computation since it can be
evaluated in linear time. From Eq. (8) we see that the first-order
error, defined as E21/2 decreases as N−1/2, as is of course very well
known. Moreover, the expected error is defined for all functions
that are quadratically integrable, as is equally well known.

The second-order error should have as its expectation value the
variance of E2, which by the same methods as above can be shown
to be
E22

− ⟨E2⟩2 =

1
N3


J4 − 4J3J1 + 3J22 − 4


J2 − J12

2
+

2
N2N2


J2 − J12

2
. (10)

We see that the second-order error, defined as E41/4 decreases,
for large N , as N−3/4. Moreover we see that the second-order
error is only meaningful for integrands that are at least quartically
integrable. The appropriate unbiased estimator with the correct
expectation value is

E4 =
1

N4N3


N2Σ4 − 4Σ2

2
+

2
N4N2N2

Σ2
2,

Σ4 = N S4 − 4 S3 S1 + 3 S22. (11)
An important observation here concerns the asymptotic behaviour
of the relative errors. Whereas the relative first-order error, i.e. the
ratio E21/2/E1, goes as N−1/2 according to the ‘standard’ behaviour
in MC, the relative second-order error E41/4/E21/2 only decreases
as fast as N−1/4. It will therefore take much longer for the error to
be well-determined than for the integral itself.1

1 Note that the relative errors as defined here are the dimensionless ratios, the
only meaningful measures of performance of the computation.

A final point is in order. By theCLTweknow that thedistribution
of E1 in an ensemble of MC computations is normally distributed,
which tells us themeaning of E2, as discussed above. Since E2 is not
computed as a simple average, its distribution is not governed by
the sameCLT.Nevertheless, as is shown in theAppendix a good case
can be made for it being also approximately normally distributed,
so that the relation between E4 and the confidence levels of E2 can
be treated in the usual manner. Below, we shall illustrate this with
several examples.

3. Positivity and numerical stability

In principle, Eqs. (7), (9) and (11) are what is necessary to
obtain the integral and its first- and second-order errors. However,
a number of considerations must modify this picture. In the first
place, the issue of positivity. Writing w(x) = J1 + u(x) so that
dx P(x) u(x) = 0, we have

J2 − J12 =


dx P(x) u(x)2,

J4 − 4J3J1 + 3J22 =


dx P(x) u(x)4 + 3


dx P(x) u(x)2

2

,

J4 − 4J3J1 + 3J22 − 4

J2 − J12

2
=

1
2


dx dy P(x) P(y) (u(x)2 − u(y)2)2, (12)

so that the expectation values of E2,4 are positive, as they should.
In addition, since with the notation Wj = E1 + uj the Σ2 can be
written as

Σ2 =
1
2


j,k


uj − uk

2
, (13)

also E2 itself is strictly nonnegative in any actual MC calculation.
For E4 this does not hold, however. A counterexample can be
constructed as follows. Let us assume that the MC weights wj take
on only the values 0 and 1, and that E1 = Nb, b ∈ [0, 1]. We then
have

Σ2 = Σ4 = N2a, a = b − b2 ∈ [0, 1/4]. (14)

The value of E4 now comes out as

E4 =
1
N4


N2

N
a −

4N3
− 6N2

N2
a2


, (15)

which is actually negative for

a >
(N − 1)2

N(4N − 6)
=

1
4

−
N − 2

2N(4N − 6)
. (16)

Although by small margin (surprisingly, in this counterexample,
for b ≈ 1/2), the positivity of E4 cannot be guaranteed, so that
E41/4 may be undefined. As an improvement on this situation we
propose to abandon the estimator E4 in favour of

Ê4 =
1

N4N3


N2Σ4 − 4Σ2

2 . (17)

This estimator has a slight (order 1/N) bias, which ought to be
acceptable since we are dealing with only the second-order error
here; its advantage is that, since

N2Σ4 − 4Σ2
2

=
N2

2


j,k


uj

2
− uk

22 , (18)

it always evaluates to a nonnegative number.
The second issue is that of numerical stability. It is well known

that already the evaluation of Σ2 involves large cancellations
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