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a b s t r a c t

The one-dimensional fluid-type transport code, TASK/TX, is developed compatible with the flux
coordinates in a tokamak. Unlike diffusive transport equations usually adopted in conventional transport
codes, the governing equations conform to a two-fluid model consisting of Maxwell’s equations and
the multiple fluid moment equations for each species.Quasi-neutrality and ambipolar flux conditions
are not imposed, which are inherently satisfied as a consequence of the equation system solved. The
neoclassical particle flux is not approximated by the flux–gradient relationship, and the total particle flux
composed of the neoclassical and turbulent contributions is directly treated as the dependent variable.
The quantities related to neoclassical transport are intrinsically calculated without external neoclassical
transport modules. In other words, TASK/TX by itself has the function of a neoclassical transport solver
based on the moment approach as well. Several numerical tests clearly reveal the unique features of
TASK/TX not possessed by conventional transport codes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Analyzing plasmas in current experiments and developing op-
eration scenarios in future devices over the entire time of dis-
charges, we believe that performing a transport simulation using
a one-dimensional transport code is still virtually the sole solu-
tion. In an early stage of research, only heat transport togetherwith
the current diffusion was focused on using a transport code. Af-
ter that, the research area has been expanded to particle transport
and, in recent years, toroidal momentum transport. Each trans-
port process is more or less approximated so that it can be treated
by a transport code, and is essentially described by a convec-
tion–diffusion equation based on the classical [1] and neoclassi-
cal transport theory [2,3]. As clearly written in [2], each transport
equation originates from some velocity moments of the kinetic
equation: taking the velocity moments leads to the moment equa-
tions. Combining them with Maxwell’s equations realizes a closed
set of equations that can describe the temporal and spatial evo-
lution of a plasma. Such a system is sometimes called a two-fluid
system, which is complete and self-consistent, but is too nonlinear
to be solved. Therefore, these equations are reduced to derive the
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diffusive transport equations that are composed of the governing
equations of conventional transport codes, with several assump-
tions explicitly introduced: Fick’s law, quasi-neutrality, ambipolar-
ity of the radial particle flux and so forth.

To advance the transport modeling beyond the diffusive model,
we have been developing a one-dimensional fluid-type transport
code TASK/TX [4]. The code is essentially based on a two-fluid
model, which consists of the conservation laws of particle, mo-
mentum and energy plus Maxwell’s equations. It also includes
the equations for beam ions [5,6] and neutrals [7]. It differs from
conventional diffusive transport codes mainly in that: the quasi-
neutrality condition ne =


s Zsns and the ambipolar flux condi-

tion


s Γ
ρ
s = 0 need not be imposed, where ns is the density for

species s, Zs is the charge number, ρ is the normalized minor ra-
dius and Γ ρ

s is the contravariant component of the particle flux;
Γ
ρ
s , treated as the dependent variable, mainly consists of the neo-

classical and turbulent particle fluxes and the neoclassical part is
not approximated by the flux–gradient relationship; the neoclassi-
cal transport characteristics are internally reproduced without the
need of an external neoclassical transport solver. There are several
achievements obtained by TASK/TX which may not be obtained by
conventional transport codes. The spin-up of toroidal rotation in
the direction counter to the plasma current in a tokamak with the
toroidal magnetic field ripple has been qualitatively reproduced
by simply imposing losses of fast ions due to ripple [5]. The point
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is that any torque sources regarding this mechanism were not di-
rectly given in simulations, but just the fast-ion loss channel was
added to the equations of fast ions. The non-ambipolar loss of fast
ions produces the fast-ion radial current, which is then compen-
sated by the return radial current in a thermal plasma, inducing
the j × B torque that imparts counter rotation. In a similar man-
ner, it has been confirmed that applying the slightly different fast
ion and accompanying electron source profiles, which stem from
ionization of beam neutrals, due to the difference in the drift or-
bit produces the j × B torque [6]. The characteristics of the evolu-
tion of the radial electric field Er were also investigated [8]. A main
drawback of the code is, however, that the governing equations are
built on the cylindrical coordinates (r, θ, φ), which is equivalent to
the large aspect ratio limit of a plasma. In this sense, some physics
originating from toroidicity such as the Pfirsch–Schlüter contribu-
tion to the flux has been dropped. Furthermore, due to the formula-
tion on the cylindrical coordinates, compatibility of the governing
equations with the existing theory established on the flux coor-
dinates in tokamaks is low. Remodeling the governing equations
of the former TASK/TX built on the cylindrical coordinates is in-
dispensable for applying TASK/TX to physics research with actual
tokamak equilibria and to analyzes and predictions of the plasma
behavior and evolution.

As a model that describes transport processes, a two-fluid
model is more advanced than a diffusive transport model in
that it involves more physics that is reproducible. However,
before focusing on the issues which a diffusive transport model
cannot deal with, we should first focus on establishing governing
equations on the flux coordinates based on a two-fluid model so
as to reproduce all phenomena which existing diffusive transport
equations can cover. In parallel with this procedure, compatibility
with existing transport theory has to be carefully examined. To
that end, we believe that it is important to minutely derive
a new set of governing equations, sometimes revisiting the
derivation of the seemingly prevalent equations and relationship
to evidently illustrate what ordering and assumption are adopted.
Even though themethod of numerical implementation has already
been described in detail in [4], it will be again described in this
paper with an emphasis on the updated points. In the following
derivation and coding, we assume a pure plasma consisting
of electrons and single-species bulk ions, typically deuterium,
although this assumption will be relaxed in future work.

This paper is organized as follows. Section 2 specifies the gov-
erning equations solved in TASK/TX in detail. In Section 3 numeri-
cal schemes adopted are briefly described. Section 4 is devoted to
numerical results which stand out the characteristics of TASK/TX,
different from other conventional transport codes. Finally, conclu-
sions and discussion are given in Section 5.

2. Derive the governing equations

2.1. Maxwell’s equations

In the straight field-line coordinates, the magnetic field B can
be written as

B = ∇ψ × ∇(qθ − ζ ) = ∇ × (ψt∇θ − ψ∇ζ )

= ∇ζ × ∇ψ + ∇ψt × ∇θ, (1)

where ψ and ψt are the poloidal and toroidal magnetic flux
functions and θ and ζ are the poloidal and toroidal angles,
respectively. The safety factor q is defined as

q ≡
dΨt

dΨp
=

dζ
dθ

=
B · ∇ζ

B · ∇θ
=

Bζ

Bθ
, (2)

where Ψp and Ψt are the poloidal and toroidal magnetic fluxes
defined by Ψp ≡ 2πψ and Ψt ≡ 2πψt , respectively. Comparing
Eq. (1) to B = ∇ ×A, we have the vector potential in the form: A =

ψt∇θ − ψ∇ζ and thus Aρ = 0, Aθ = ψt and Aζ = −ψ . Here, the
subscripts (superscripts) of the coordinates denote the covariant
(contravariant) components of a vector, and the flux surface label
ρ is defined as

ρ ≡


Ψt

Ψta
, (3)

whereΨta isΨt at the plasma surface. It is found in the relationship
that the covariant components of a vector potential are equivalent
to the magnetic flux functions and subsequently are the flux
functions. In axisymmetric devices like tokamaks, the toroidal
coordinate ζ is taken to be equivalent to the geometrical toroidal
angle and then the partial orthogonality, i.e., ∇ρ · ∇ζ = 0 =

∇θ · ∇ζ , is satisfied. B is thus expressed as

B = Bp + Bt = ∇ζ × ∇ψ + I∇ζ . (4)

Here, I(ρ) ≡ RBt and this is the definition of the toroidal magnetic
field strength Bt . Note that the poloidal current function I is the
flux function. From the definition, the toroidal magnetic flux can
be written as

Ψt ≡


Sζ

B · dSζ =
1
2π


V
B · ∇ζ dV =

1
2π


V

I
R2

dV , (5)

where the final equality follows from Eq. (4). Here, R is the major
radius and V is the plasma volume. Averaging this equation over
the flux surface after differentiating it with respect to V yields

dΨt

dV
=

1
2π

d
dV


V

I
R2

dV =
I⟨R−2

⟩

2π
, (6)

where we have applied the definition of the flux surface average
represented by ⟨ ⟩ in the final equality. This equation leads to the
expressions of the following flux functions:

I =
4π2

V ′⟨R−2⟩

∂ψt

∂ρ
, (7)

q =
dψt

dψ
=

I⟨R−2
⟩

4π2

∂V
∂ψ

=
IV ′

⟨R−2
⟩

4π2

∂ρ

∂ψ
, (8)

where the differential volume V ′ is defined as V ′
≡ ∂V/∂ρ. Once

ψ and ψt are determined by solving Maxwell’s equations, I and q
are determined as well.

From Faraday’s law, the electric field is given by

E ≡ −∇Φ −
∂A
∂t
, (9)

where Φ is the electrostatic potential. The contravariant radial
component of E is

Eρ ≡ E · ∇ρ = −∇Φ · ∇ρ = −|∇ρ|
2 ∂Φ

∂ρ
, (10)

where Φ has been assumed to be the flux function. As seen from
the above relationship, Eρ is not the flux function, albeit Φ is.
Therefore, there are several ways to give the definition of Er . In this
paper, we use the definition of Er in the form:

Er ≡ ⟨E · ∇r⟩ = −
∂r
∂ρ

⟨|∇ρ|
2
⟩
∂Φ

∂ρ
. (11)

Here, r is the minor radius and is defined using the volume as
r ≡


V/(2π2R). Taking the inner product of E with ∇ζ gives the

contravariant component of the toroidal electric field

Eζ = −
∂Aζ

∂t
=

1
R2

∂ψ

∂t
. (12)
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