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a b s t r a c t

Wepresent amethod for thenumerical calculation of derivatives of functions of general complexmatrices.
The method can be used in combination with any algorithm that evaluates or approximates the desired
matrix function, in particular with implicit Krylov–Ritz-type approximations. An important use case for
the method is the evaluation of the overlap Dirac operator in lattice Quantum Chromodynamics (QCD)
at finite chemical potential, which requires the application of the sign function of a non-Hermitian
matrix to some source vector. While the sign function of non-Hermitian matrices in practice cannot be
efficiently approximated with source-independent polynomials or rational functions, sufficiently good
approximating polynomials can still be constructed for each particular source vector. Our method allows
for an efficient calculation of the derivatives of such implicit approximations with respect to the gauge
field or other external parameters, which is necessary for the calculation of conserved lattice currents
or the fermionic force in Hybrid Monte-Carlo or Langevin simulations. We also give an explicit deflation
prescription for the case when one knows several eigenvalues and eigenvectors of the matrix being the
argument of the differentiated function. We test the method for the two-sided Lanczos approximation
of the finite-density overlap Dirac operator on realistic SU(3) gauge field configurations on lattices with
sizes as large as 14× 143 and 6× 183.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Over the last decade matrix valued functions of matrices have become an essential tool in a variety of sub-fields of science and
engineering [1]. An important application for matrix functions in the field of lattice QCD is the so-called overlap Dirac operator, which
is a discretisation of the Dirac operator that respects the properly defined lattice chiral symmetry (Ginsparg–Wilson relations) and is free
of doublers. Therefore the overlap Dirac operator is well suited for the non-perturbative study of strongly interacting chiral fermions. At
finite chemical potential µ the overlap Dirac operator is defined as [2]

Dov :=
1
a
(1+ γ5 sgn [H(µ)]) , (1)

where H(µ) := γ5Dw(µ), Dw(µ) is theWilson–Dirac operator at chemical potentialµ, sgn is the matrix sign function and a stands for the
lattice spacing. An explicit form of Dw(µ) is given in Appendix A.

At finite chemical potential H is a non-Hermitian matrix with complex eigenvalues. Since the size of the linear space on which H
is defined is typically very large (n ∼ 104 . . . 107), it is not feasible to evaluate the matrix sign function exactly. While at µ = 0 one
can efficiently approximate the sign function of the Hermitian operator H by polynomials or rational functions [3–6], at nonzero µ the
operator H becomes non-Hermitian and such approximations typically become inefficient. However, having in mind that in practice
the sign function sgn [H(µ)] is applied to some source vector, one can still construct an efficient polynomial approximation for each
particular source vector byusingKrylov subspacemethods, such asKrylov–Ritz-type approximations. One of the practical Krylov–Ritz-type
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approximations which are suitable for the finite-density overlap Dirac operator is the two-sided Lanczos (TSL) algorithm, developed in
[7,8]. The efficiency of the TSL approximation can be further improved by using a nested version of the algorithm [9].

Many practical tasks within lattice QCD simulations require the calculation of the derivatives of the lattice Dirac operator with respect
to the gauge fields or some other external parameters. For example, conserved lattice vector currents and fermionic force terms in Hybrid
Monte-Carlo simulations involve the derivatives of the Dirac operator with respect to Abelian or non-Abelian gauge fields. Also, electric
charge susceptibilities which are used to quantify electric charge fluctuations in quark–gluon plasma involve derivatives of the Dirac
operator with respect to the chemical potential.

While explicit expressions for the derivatives of source-independent approximations of matrix functions are well known and are
routinely used in practical lattice QCD simulations, differentiating the implicit source-dependent approximation appears to be a more
subtle problem. In principle the algorithms for taking numerical derivatives of scalar functions, like the finite difference method or
algorithmic differentiation, can be generalised to matrix functions and to matrix function approximation algorithms. It is easy to combine
an approximation with the finite difference method, but finite differences are very sensitive to round-off errors and it is often not possible
to reach the desired precision in the derivative using this method. For algorithmic differentiation the situation is more complicated.
Depending on the approximation method used it might not be immediately clear how to apply algorithmic differentiation. Even if
algorithmic differentiation can be implemented for the approximation method this might lead to a numerically unstable algorithm. Such
a behaviour was observed when the TSL approximation was used in conjunction with algorithmic differentiation [10].

In this paper, we propose and test a practical numerically stable method which makes it possible to compute derivatives of implicit
approximations of matrix functions to high precision. The main motivation for this work is the need to take derivatives of the overlap
Dirac operator in order to compute conserved currents on the lattice.

The structure of the paper is the following: in Section 2 we state some general theorems about matrix functions and their derivatives,
which provide the basis for our numerical method. In Section 3we discuss how the calculation of the derivatives ofmatrix functions can be
made more efficient by deflating a number of small eigenvalues of the matrix which is the argument of the function being differentiated.
The deflation is designed with the matrix sign function and the TSL approximation in mind. Nevertheless we want to emphasise that the
method is very general and can be applied to other matrix functions and different matrix function approximation schemes. In Section 4
we demonstrate how the method can be used in practice. First we discuss the efficiency and convergence of the TSL approximation. After
that, as a test case, we compute U (1) lattice vector currents, which involve the derivatives of the overlap Dirac operator with respect
to background Abelian gauge fields, and demonstrate that they are conserved. Finally we summarise and discuss the advantages and
disadvantages of our method in Section 5. Detailed calculations and derivations as well as a pseudo code implementation of the method
can be found in the Appendices.

2. Matrix functions and numerical evaluation of their derivatives

For completeness we start this Section with a brief review of matrix functions. Let the function f : C→ C be defined on the spectrum
of a matrix A ∈ Cn×n. There exist several equivalent ways to define the generalisation of f to a matrix function f : Cn×n

→ Cn×n [1,11].
For the purpose of this paper the most useful definition is via the Jordan canonical form. A well known Theorem states that any matrix
A ∈ Cn×n can be written in the Jordan canonical form

X−1AX = J = diag (J1, J2, . . . , Jk) , (2)
where every Jordan block Ji corresponds to an eigenvalue λi of A and has the form

Ji = Ji(λi) =



λi 1 0 · · · 0

0 λi 1
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . . λi 1
0 · · · 0 0 λi

 ∈ Cmi×mi , (3)

withm1+m2+· · ·+mk = n. The Jordanmatrix J is unique up to permutations of the blocks but the transformationmatrix X is not. Using
the Jordan canonical form the matrix function can be defined as [1,11]

f (A) := Xf (J)X−1 = X diag(f (Ji))X−1. (4)
The function of the Jordan blocks is given by

f (Ji) :=


f (λi) f ′(λi) . . .

f (mi−1)(λi)

(mi − 1)!

0 f (λi)
. . .

...
...

. . .
. . . f ′(λi)

0 · · · 0 f (λi)

 ∈ Cmi×mi . (5)

Note that this definition requires the existence of the derivatives f (mi−1)(λi) for i = 1, . . . , k. If A is diagonalisable every Jordan block has
size one and Eq. (5) reduces to the so-called spectral form

f (A) = X diag(f (λ1), f (λ2), . . . , f (λn))X−1, (6)
which does not depend on the derivatives of f . For instance, the matrix sign function sgn [H(µ)] in (1) is defined by sgn(λi) = sgn (Re λi).

Finding the Jordan normal form (or the spectral decomposition) of a matrix is a computationally expensive task and takes O(n3)
operations. For largematrices it is therefore not feasible to compute thematrix function exactly. In practical calculations it is often sufficient
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