
Computer Physics Communications 207 (2016) 83–90

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

The Dynamic Kernel Scheduler—Part 1
Andreas Adelmann a,∗, Uldis Locans a,b, Andreas Suter a
a Paul Scherrer Institut, Villigen, CH-5232, Switzerland
b University of Latvia, 19 Raina Blvd., Riga, LV 1586, Latvia

a r t i c l e i n f o

Article history:
Received 30 October 2015
Received in revised form
6 April 2016
Accepted 16 May 2016
Available online 26 May 2016

Keywords:
GPU
CUDA
Intel MIC
FFT
Monte Carlo
OPAL
µSR

a b s t r a c t

Emerging processor architectures such as GPUs and Intel MICs provide a huge performance potential
for high performance computing. However developing software that uses these hardware accelerators
introduces additional challenges for the developer. These challenges may include exposing increased
parallelism, handling different hardware designs, and using multiple development frameworks in order
to utilise devices from different vendors.

The Dynamic Kernel Scheduler (DKS) is being developed in order to provide a software layer between
the host application and different hardware accelerators. DKS handles the communication between the
host and the device, schedules task execution, and provides a library of built-in algorithms. Algorithms
available in the DKS library will be written in CUDA, OpenCL, and OpenMP. Depending on the available
hardware, the DKS can select the appropriate implementation of the algorithm.

The first DKS version was created using CUDA for the Nvidia GPUs and OpenMP for Intel MIC. DKS was
further integrated into OPAL (Object-oriented Parallel Accelerator Library) in order to speed up a parallel
FFT based Poisson solver and Monte Carlo simulations for particle–matter interaction used for proton
therapy degrader modelling. DKS was also used together with Minuit2 for parameter fitting, where χ2

and max-log-likelihood functions were offloaded to the hardware accelerator. The concepts of the DKS,
first results, and plans for the future will be shown in this paper.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years hardware accelerators have become increasingly
popular within scientific computing. Based on the Top500 list
from June 2015 [1], 90 of the top 500 supercomputers in the
world are accelerator based. This includes the top two systems
on the list: Tianhe-2 which uses Intel Xeon Phi coprocessors
and Titan which uses NVIDIA K20x GPUs. GPU usage for general
purpose computing has become even more important, due to
the gaming industry. Almost every computer is now equipped
with a GPU, but if the application is not exploiting the GPU,
it is not using all the available computational power of the
system. However, developing software that can take advantage of
hardware accelerators can become a challenging task, especially
for large existing applications. Each hardware accelerator has its
own architecture andmemory hierarchy,whichmust be taken into
account to gain the maximum performance out of the device. In
addition to hardware differences, there are also varyingmethods to

∗ Corresponding author.
E-mail address: andreas.adelmann@psi.ch (A. Adelmann).

program these devices. NVIDIA provides the CUDA [2] toolkit for its
GPUs, both AMD and NVIDIA support the OpenCL [3] framework,
and Intel allows usage of standard tools and languages to program
Intel MIC processor [4], but parallelisation and vectorisation of
the code is needed to gain the best performance. There are also
OpenACC [5] and OpenMP [6] standards that allow the targeting of
hardware accelerators by expressing parallelism through compiler
directives.

In this work, the Dynamic Kernel Scheduler (DKS) is presented
which provides a slim software layer between the host application
and the hardware accelerators. DKS separates the accelerator and
framework specific code from the host application and provides a
simple interface that can be implemented in the host application
to offload tasks to the accelerator. DKS provides functions to
handle communication and data transfer between host and device,
as well as a library of functions written in CUDA, OpenCL, and
OpenMP that allow the targeting of different accelerators. The first
version of DKS was integrated into OPAL (Object-oriented Parallel
Accelerator Library). This DKS version uses CUDA kernels and
OpenMP offload pragmas to run OPAL’s FFT based Poisson solver
and Monte Carlo simulations on a GPU and Intel MIC. DKS was
also used together with Minuit2 for parameter fitting, where χ2

http://dx.doi.org/10.1016/j.cpc.2016.05.013
0010-4655/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2016.05.013
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2016.05.013&domain=pdf
mailto:andreas.adelmann@psi.ch
http://dx.doi.org/10.1016/j.cpc.2016.05.013


84 A. Adelmann et al. / Computer Physics Communications 207 (2016) 83–90

and max-log-likelihood functions were offloaded to the hardware
accelerator.

In the literature, there are several FFT Based Poisson solvers
developed for GPUs using CUDA which use NVIDIA’s cuFFT
library [7,8]. One can also find research on the use of customised
FFTs for asynchronous execution and mapping FFT based Poisson
solvers to multi node systems [9–11]. Numerous studies [12–17]
have been carried out to show the potential of GPUs and Intel
Xeon Phi co-processors for Monte-Carlo simulations for proton
and photon transport. These problems are some of the most time
consuming parts of the OPAL simulations, and previous research
shows that they are good candidates for acceleration on the co-
processors.

Many research projects try to focus on improving programma-
bility of hardware accelerators. Apart from compiler directive
based approaches, there are a number of vendor supported li-
braries [18,19] that allow the simplification of offloading specific
tasks to accelerators. There has also beenwork on creating abstrac-
tions and providing software layers that would allow to express
kernels [20–22] for hardware accelerators, which can be translated
to CUDA or OpenCL code that is run on the device.

The ability of DKS to have implementations using different
frameworks and libraries, and switch between them from the
host application allows the targeting of hardware accelerators
of different types and fine tuning of the code to gain the
maximum performance from each device. This approach also
provides more portability and software investment protection for
the host application. In case some hardware architecture is no
longer manufactured, or some new architecture or development
framework emerges, only DKS needs to be updated.

The rest of the paper is structured as follows: Section2describes
the concepts and architecture of DKS; Section 3 describes the used
hardware; Section 4 describes the concepts of OPAL’s FFT based
Poisson solver and Monte-Carlo type particle–matter interaction
simulations as well as DKS implementation of these functions
and the benchmark results; Section 5 explains the DKS and
Minuit2 usage and results for parameter fitting using hardware
acceleration; and Section 6 provides conclusions and future of the
DKS.

2. Concept and architecture of the Dynamic Kernel Scheduler
(DKS)

2.1. Concept

The Dynamic Kernel Scheduler (DKS) is a slim software layer
between the host application and the hardware accelerator, as
depicted in Fig. 1. The aim of the DKS is to allow the creation of fast
fine tuned kernels using device specific frameworks such as CUDA,
OpenCL, OpenACC andOpenMP. On top of that, DKS allows the easy
use of these kernels in host applications without providing any
device or framework specific details. This approach facilitates the
integration of different types of devices in the existing applications
withminimal code changes andmakes thedevice and thehost code
a lot more manageable.

The architecture of DKS can be split into three main parts:

1. The first part provides communication functions that handle
memory allocation and data transfer to, and from, the device.
All the memory management is left up to the user. So that
the data transfers and memory allocation can be scheduled
only when necessary. DKS also supports GPU streams such
that asynchronous data transfer and kernel execution can be
implemented when possible.

Fig. 1. The Dynamic Kernel Scheduler concept.

2. The second part of DKS consists of a function library, which con-
tains algorithms written in CUDA, OpenCL, and OpenMP to tar-
get different devices. DKS can switch between implementations
based on the hardware that is available. Writing functions us-
ingmultiple frameworks results in extrawork, but this provides
the opportunity to fine tune kernels for each device architec-
ture for maximum performance. That also allows the targeting
of systems containing different types of devices. The different
implementations of the code are always separated so the code
is still easy to manage. Additionally if a host application is tar-
geted at a specific system, implementations that are not needed
can be omitted.

3. The third part of DKS is the auto-tuning functionalitywhichwill
be discussed in a forthcoming paper. The aim of auto-tuning is
to select the appropriate implementation of the algorithm and
change the launch parameters according to the devices that are
available on the system in order to gain the maximum perfor-
mance. The auto-tuning functionality relies on knowledge of
device architecture and benchmark tests that can be run on the
system before running the application.
Fig. 2 shows an example code of DKS usage inside a host

application to perform Fast Fourier transform. The host application
has full control over the memory allocation and data transfer to
the device, but there are no device specific details in the host code.
DKS evaluates the calls made by host application and chooses the
appropriate device to use, and algorithm implementation, to run
the code on selected accelerator.

2.2. Architecture

The Dynamic Kernel Scheduler is split into separate modules.
Each module contains function implementations using different
frameworks. The base class for each module contains functions
which handles the device management, memory management,
and data transfer, this base class can be extended to cover all
the necessary algorithm specific functions. The base class of DKS
receives all the calls from the host application and decides which
device specific implementation should be used to run the code on
the device. Fig. 3 shows the architecture of the first version of DKS,
for each module base class can be easily extended to include other
algorithms and the base class of DKS can be extended to include
other modules to handle different development frameworks.

3. Accelerator hardware

The development and tests of DKS were performed using
Nvidia GPUs and Intel Xeon Phi accelerator. The features of all



Download English Version:

https://daneshyari.com/en/article/4964616

Download Persian Version:

https://daneshyari.com/article/4964616

Daneshyari.com

https://daneshyari.com/en/article/4964616
https://daneshyari.com/article/4964616
https://daneshyari.com

