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a b s t r a c t

Wedescribe an approach for the efficient calculation of a large number of four-point correlation functions
for various baryon–baryon (BB) channels, which are the primary quantities for studying the nuclear
and hyperonic nuclear forces from lattice quantum chromodynamics. Using the four-point correlation
function of a proton-Λ system as a specific example, we discuss how an effective block algorithm
significantly reduces the number of iterations. The effective block algorithm is applied to calculate
52 channels of the four-point correlation functions from nucleon–nucleon to Ξ–Ξ , in order to study
the complete set of isospin symmetric BB interactions. The elapsed times measured for hybrid parallel
computation on BlueGene/Q demonstrate that the performance of the present algorithm is reasonable for
various combinations of the number of OpenMP threads and the number of MPI nodes. The numerical
results are compared with the results obtained using the unified contraction algorithm for all computed
sites of the 52 four-point correlators.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Determining how the nuclear force is described from a fundamental perspective is a challenging problem in physics. Characterising
an atomic nucleus as a nucleonic many body system provides successful results although a nucleon is not a true rudimentary constituent
of atomic nuclei but a composition of quarks and gluons defined in quantum chromodynamics (QCD), which is the theory of the strong
interaction. For example, high-precision nucleon–nucleon (NN) potentials are available to describe the NN scattering data at low energies
as well as the deuteron properties [1,2]. The energy levels of light nuclei are well reproduced by such an NN potential together with a
three-nucleon force [3,4]. However, in contrast to the normal nuclear force, phenomenological descriptions of hyperon–nucleon (YN) and
hyperon–hyperon (YY ) interactions are notwell constrained from experimental data because of the short life time of hyperons. The precise
determination of NN , YN , and YY interactions has a large impact on the studies of both hypernuclei [5–7] and the hyperonic matter inside
neutron stars [8–11].

Recently, a new lattice-QCD-based method for studying the interhadronic interactions has been proposed [12]. In this method, the in-
terhadron potential can be obtained first from lattice QCD bymeasuring the Nambu–Bethe–Salpeter (NBS) wave function. The observables
such as the phase shifts and the binding energies are calculated using the resultant potential [13]. This approach has been applied to various
baryonic interactions [14–25], and has been recently extended to systems in inelastic channels [26–28]. This approach is now called HAL
QCDmethod because almost all the recent developments cited above have been provided by the HAL QCD Collaboration. The flavour sym-
metry breaking is a key topic in the study of the isospin symmetric baryon–baryon (BB) interactions based on the 2+1 flavour latticeQCD. In
such a situation, it is advantageous to calculate a large number of NBSwave functions of various BB channels simultaneously in a single lat-
tice QCD calculation. Therefore, an efficient approach for performing such a computationally demanding lattice QCD calculation is crucial.

The purpose of this paper is to describe a practicable algorithm that can efficiently compute a large number of four-point correlation
functions of various BB systems. The contraction algorithm considered in this paper is different from the unified contraction algorithm [29]
and has been used to calculate the ΛN and ΣN potentials [30–32]. This is a reasonable approach for computing the various BB correlators
efficaciously. Methods following different approach for large baryon number systems are found in Refs. [33,34]. The paper is organised as
follows: Section 2 outlines a basic formulation of the HAL QCD approach. Section 3 describes an approach for calculating the four-point
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correlation function by considering the pΛ system as an example. The present contraction algorithm is generalised to various BB systems
in Section 4. In Section 5 we demonstrate the hybrid parallel computation of the four-point correlation functions. The numerical results
calculated by the hybrid parallel program are compared with the results from the unified contraction algorithm in Section 6. Section 7
summarises the paper.

2. Outline of the HAL QCD method

In the study of the nuclear force using theHALQCD approach, the equal timeNBSwave functionwith Euclidean time t is a vital quantity,
which is defined by[12,13]

φE(r⃗)e−Et
=


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
0
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where E =
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B1
+


k2 + m2

B2
is the total energy in the centre of mass system of a baryon number B = 2 state with masses mB1

and mB2 . B1,α(x) (B2,β(x)) denotes the local interpolating field of baryon B1 (B2). For simplicity, we consider a two-nucleon system in the
isospin symmetric limit. Thus,mB1 = mB2 = mN and the B1,α = pα (B2,β = nβ ) is the local interpolating field of proton (neutron) given by

pα(x) = εabc (ua(x)Cγ5db(x)) ucα(x), nβ(y) = −εabc (ua(y)Cγ5db(y)) dcβ(y), (2)
where ucα(x) (dcβ(x)) is the up (down) quark field with the colour indices denoted by a, b, and c , and the Dirac spinors denoted by α and
β . The εabc is the totally anti-symmetric tensor and C = γ4γ2 is the charge conjugation matrix. For simplicity, we have suppressed the
dummy spinor indices in the round brackets. Based on the NBS wave function, we define a non-local but energy-independent potential

∇
2
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
φE(r⃗) =


d3r ′ U(r⃗, r⃗ ′)φE(r⃗ ′) with the reduced mass µ = mN/2. An important point of the HAL QCD method is that the

potential defined above gives the correct scattering phase shift of the S-matrix for all values of k in the elastic region, E < Eth ≡ 2mN +mπ ,
with the pion massmπ , by construction. A more detailed account of the relation between the NBS wave function and the S-matrix in QCD
is found in the appendix A of Ref. [13].

In lattice QCD calculations, we compute the normalised four-point correlation function defined by [20]
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
X⃗


0
B1,α(X⃗ + r⃗, t)B2,β(X⃗, t)J(J,M)

B3B4
(t0)

 0  exp{−(mB1 + mB2)(t − t0)}, (3)
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α′β ′ B3,α′(t0)B4,β ′(t0) is a source operator that creates B3B4 (=pn) states with the total angularmomentum J,M .
The normalised four-point function can be expressed as
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where En (|En⟩) is the eigen-energy (eigen-state) of the six-quark system and An =


α′β ′ P (JM)

α′β ′ ⟨En|B4,β ′B3,α′ |0⟩. At moderately large t − t0
where the inelastic contribution above the pion production O(e−(Eth−2mN )(t−t0)) = O(e−mπ (t−t0)) becomes exiguous, we can construct the
non-local potential U through
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d3r ′ U(r⃗, r⃗ ′)R(r⃗ ′). In lattice QCD calculations in a finite box, it is practical to use the

velocity (derivative) expansion, U(r⃗, r⃗ ′) = V (r⃗, ∇⃗r)δ
3(r⃗ − r⃗ ′). In the lowest few orders we have

V (r⃗, ∇⃗r) = V0(r) + Vσ (r)σ⃗1 · σ⃗2 + VT (r)S12  
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+O(∇2), (5)

where r = |r⃗|, σ⃗i are the Paulimatrices acting on the spin space of the ith baryon, S12 = 3(r⃗ ·σ⃗1)(r⃗ ·σ⃗2)/r2−σ⃗1 ·σ⃗2 is the tensor operator, and
L⃗ = r⃗ × (−i∇⃗) is the angular momentum operator. The first three-terms constitute the leading order (LO) potential while the fourth term
corresponds to the next-to-leading order (NLO) potential. By taking the non-relativistic approximation, En−mB1 −mB2 ≃ k2n/(2µ)+O(k4n),

and neglecting the VNLO and the higher order terms, we obtain

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R(r⃗, t) ≃ VLO(r⃗)R(r⃗, t). For the spin singlet state, we extract

the central potential as VC (r; J = 0) = (∇
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components as
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Therefore, the Schrödinger equation with the LO potentials for the spin triplet state becomes
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from which the central and tensor potentials, VC (r; J = 0) = V0(r) − 3Vσ (r) for J = 0, VC (r; J = 1) = V0(r) + Vσ (r), and VT (r) for J = 1,
can be determined.1

1 The potential is obtained from the NBS wave function at moderately large imaginary time; it would be t − t0 ≫ 1/mπ ∼ 1.4 fm even for the physical pion mass.
Furthermore, no single state saturation between the ground state and the first excited states, t − t0 ≫ (∆E)−1

=

(2π)2/(2µL2)

−1 , is required for the present HAL QCD
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