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The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic
Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion
level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the
gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field
interpolation are quantified for common particle shapes used in the PIC models. It is shown through such
analysis and in simulations that the lack of spectral fidelity relative to the physical system due to the
existence of aliased spatial modes is the major cause of the FGI in the PIC model.
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1. Introduction

N-body type problems arise in many disciplines and underpins
our understanding of complex dynamical systems like plasmas and
the cosmos. In a typical N-body problem, the interaction in parti-
cle pairs can be of electrostatic, or electromagnetic, or gravitational
in nature and each particle responds to a force that is the linear
superposition of all one-to-one interactions it receives. Direct
calculation of all one-to-one interactions of N, particles has a com-
putation cost of O(Nj), therefore it is amenable to numerical simu-
lation only when N, is small. The PIC method [ 1], or more generally
the particle-mesh method, is an efficient numerical method that
reduces the computation complexity by introducing a computation
grid and taking advantage of the linearity in the sum of one-to-one
interactions. In the PIC method, the interaction among the parti-
cles is mediated by the grid through the Green’s function of the
interaction represented on the grid. The computation complexity
isreduced from O(Ng) to O(Ng) +O(N,), where N, is the number of
grid points. When the number of particles per cell N, /N, > 1, the
gain in speedup is large (~N, ), therefore the PIC method is a popu-
lar choice in the ab-initio numerical simulation of N-body systems.
However, two major problems arise in the PIC method due to the
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discrete grid: (1) the use of an Eulerian grid for the moments of the
particle distribution and fields, in conjunction with individual La-
grangian particles in continuous phase space, implies an inherent
inconsistency; (2) the grid representation of the Green’s function
is usually an approximation of the real Green'’s function in the con-
tinuous space.

Despite the computation efficiency of the PIC method and its
wide-spread use, especially in plasma physics, common PIC mod-
els are vulnerable to an electrostatic numerical instability known
as the Finite Grid Instability (FGI) [2,3] (there is also an electro-
magnetic instability known as the numerical Cherenkov instabil-
ity [4-6]). Early practitioners using the electrostatic PIC model to
simulate plasma dynamics observed a heating effect to the plasma
which depends on the numerical parameters, i.e., the grid size Ax
and the number of particles per cell N¢. This numerical heating has
been extensively studied since the early development of the PIC
model and the empirical scaling of the heating time 7y of FGl in a
thermal plasma, which has the form w,ty ~ (Ap/Ax)?(Np + Nc),
is summarized in Ref. [1]. Here Np is the number of particles in a
Debye length Ap, w), is the plasma frequency. It is also known that
FGI comes from the aliased modes in the system due to the incom-
patibility between the Fourier spectra of the discrete Eulerian and
continuous Lagrangian variables. (Numerical Cherenkov instability
may also come from an Eulerian-Lagrangian mismatch in the con-
vective derivative [4].) The numerical instabilities have been con-
ventionally analyzed as unphysical resonances between physical
and aliased modes [1,4-8]. The locations and growth rates of the
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unstable modes have been solved for using linear dispersion anal-
ysis in limited, yet essential cases, i.e., for spatially uniform cold or
Maxwellian distributions. It is worth noting that, unlike the two-
stream type instabilities, for some commonly used electrostatic
and electromagnetic PIC models, FGI can arise without the inter-
section of the physical and aliased modes [8,9]. Analysis for more
realistic and nonlinear simulations has not been carried out.

Various methods and numerical schemes to mitigate FGI have
been proposed, including introducing grid interlacing [10] and
random jiggling [ 10,11], employing higher order particle shapes [9]
and temporal/spatial filtering [12], implicit time differencing and
enforcing the energy conservation property of the numerical
algorithm between time steps [13-16]. All these techniques have
shown great promise with regard to the reduction of the instability
growth rate. However, this is often achieved with substantial
distortion/damping of the meaningful dynamics at the short
wavelength scale or by sacrificing conservation properties (such
as the loss of momentum conservation in an energy conserving
algorithm, which has long been debated in the development of
the PIC models [1]). Recent rigorous work on energy conserving
algorithm has led to a large improvement of the momentum
conservation through nonlinear iterations [ 14].

The above efforts notwithstanding, the important questions
about how and where FGI arises exactly remain to be answered.
Previous works treat aliased modes as inherent in the system
and study their properties and corresponding mitigation method.
However, the origin of the numerical instabilities is clearly
unphysical. Therefore, in principle a simulation plasma should be
contrasted with the underlying continuous system, which has the
same number of particles and particle shape as the simulation
plasma, to determine the origin of the numerical instabilities. We
call latter the physical system in the following, as it obeys a Vlasov
equation for the shaped particles, as long as the same particle shape
is used in defining the charge density from the particle and the
electric field on the particle.

There are many choices about what to be contrasted between
the PIC and the physical systems. Conservation properties and
dispersion relationship have been used. It should be noted that one
direct consequence of FGI in a PIC model without built-in energy
(momentum) conservation property is, as can be expected, the
gross violation of the energy (momentum) conservation. For this
reason, recent efforts have been devoted to improve the energy
and/or momentum conservation of the numerical scheme in order
to control FGIL. But it should be emphasized that conservation
laws are desirable when eliminating the FGI, but they are neither
necessary nor sufficient conditions. An isolated plasma system
can exhibit various kinds of physical instabilities while strictly
conserving momentum and energy. Furthermore, as total energy
is a global property of the underlying microscopic processes and
only one constraint on the degrees of freedom (two if total
momentum is also considered) in the phase space, to understand
what gives rise to FGI and its consequences, we need a better
resolution into the dynamics. Linear dispersion, in which the
eigenmodes with complex Fourier frequency can be viewed as
a way to resolve the (linearized) dynamics, is a better choice.
However, such analysis is limited to special cases of the particle
distribution and small perturbation amplitude. Insight from such
analysis for the improvement to the numerical scheme is useful but
not easy to obtain and apply to more general situations. Recently,
symplectic PIC codes [17,18] have also been developed, for which
the symplectic structures of the Hamiltonian system are preserved.
The symplectic structure may be a good choice to contrast the PIC
and the physical systems, however, it is not clear how it is related
to the numerical instabilities at present.

In this paper, we will study the FGI in the 1D electrostatic
PIC models by spectrally resolving the dynamics at the single

particle level, thus allowing us to identify the components in
the model that lead to unphysical instability. The dynamics in
PIC result from the superposition of the pair-wise interactions as
in a physical system. The major components of an electrostatic
PIC model — the charge deposition, the field interpolation and
the particle pusher, all operate on a single particle, while the
field solver can be viewed as operating on the spatial Fourier
modes. Therefore the use of the particle and spectral resolutions
are natural choices for this purpose. Such a representation of
the PIC models is given in Section 2 and the spectral errors in
PIC models are analyzed in Section 3. As an alternative to the
individual particle representation, one can also choose the modes
of the collective particle motion as a representation. This has
the advantage that the plasma dynamics can then be viewed as
the collective wave-particle interactions and such couplings in a
physical system and in a PIC model can also be contrasted. We
note that the deposition, field interpolation and field solver only
involve spatial operations at a fixed time, while the particle update
in the pusher is a temporal operation in continuous space whose
stability and convergence can be verified to rule out its role in
FGI. To facilitate simulation comparison with the physical system,
the gridless model [19-21] is used, in which all components and
elementary operations of the physical system are projected onto
the finite Fourier basis. It is demonstrated in Section 4 that the lack
of spectral fidelity in the deposition, field interpolation is the major
cause of the FGI. Finally we summarize in Section 5.

2. Spectral representation of the PIC model

2.1. Charge deposition

Let us first look at the charge deposition scheme in Fourier
space to understand the effect of aliasing. We will see that the
most important effect in Fourier space is the summation over
all Brillouin zones which is the result of a convolution process
between a continuous spectrum and a periodic spectrum over
Brillouin zones. The sampling needed to go from continuous space
to a discrete grid is the cause of the latter spectrum.

In a grid-based model like PIC, the contribution of a particle
at position x,” and of total charge Q on the density grid r, is
p(r,) = QW(r,, x,), where r, is a vector on a uniform grid
with grid size Ax = (Ax, Ay, Az). The interpolation function
for the deposition is W (r,, r) = W(|r, — r|). Note that we have
assumed the cell volume V = AxAyAz = 1 and dropped it for
clarity. The difference between a particle shape function S(r) and
an interpolation function W (r,, r) is discussed in Appendix A. In
the rest of this section, we will not distinguish these two and will
use S(r) for clarity, p(r,) = QS,(r, — Xp). We define a transform
(note this is not necessarily the proper Discrete Fourier Transform
as r, may be shifted from the origin of the coordinate system, as
will be shown later),

pk) = Zp(r,,)e‘”“rp =Q 2:5,O (rp — xp)e *To, (2.1)
rp rp

which can be viewed as the continuous Fourier transform of
p(r) er 8(r — r,), where p(r) = QS,(r — xp). Then the non-
unitary inverse transform is

1 oo ~ ik-r,
p(ry) = Q[wp(tf)ek rdk.
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