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a b s t r a c t

A mode parabolic equation in the ray centered coordinates for 3D underwater sound propagation is
developed. The Gaussian beam tracing in this case is constructed. The test calculations are carried out
for the ASA wedge benchmark and proved an excellent agreement with the source images method in the
case of cross-slope propagation. But in the cases of wave propagation at some angles to the cross-slope
direction an account of mode interaction becomes necessary.
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1. Introduction

The problem of sound propagation by the method of summa-
tion of Gaussian beams was considered in [1–6]. In these papers
the absence of singularities appropriate to the ray methods (such
as caustics) was proven and also the tuning of themethodwas per-
formed. In the present paper we consider a method of mode Gaus-
sian beams, which enables to treat 3D problems. In this study a
method of Gaussian beams is amalgamated with the normal mode
theory. More precisely, the equations for the mode amplitudes are
reduced to the parabolic equations that are subsequently solved
along the horizontal rays. This approach may be considered as the
direct generalization of vertical modes + horizontal rays method
of Burridge and Weinberg [7], yet it also incorporates some fea-
tures of the mode parabolic equations theory. In the frame of the
proposed method we do not consider the mode interaction.

The problem of sound propagation in a three-dimensional
wedge is solved by the developed method. It appears that in the
case of the cross-slope propagation themethod gives very accurate
results despite the absence of the mode interaction in our model.
Moreover it is necessary to consider only the exited modes which
present explicitly in the final solution. On the other hand, in the
parabolic equation [8,9] we should consider the large number
of modes with their interactions. Thus, many effects previously
described in the terms of the mode interaction can be explained
in the terms of the horizontal refraction.
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In the case when the angle of the track of sound propagation to
the across slope direction gradually increases it becomes necessary
to account for the mode interaction. It is shown, that at the
angle of 18° the mode interaction becomes significant and further
increases. The mode interaction is therefore essential for the more
general models of sound propagation.

The paper is organized as follows. After formulation of the prob-
lem in Section 2, we consider an adiabatic mode Helmholtz equa-
tion. Then, by using Babich method, we obtain a mode parabolic
equation in the ray centered coordinates from the derived
Helmholtz equation. In Section 4 we discuss certain details related
to mode Gaussian beams propagation. In Section 5 the method of
mode Gaussian beams is used for the numerical solution of the ASA
wedge benchmark problem in the case of cross-slope wave propa-
gation and in the cases ofwave propagation at various angles to the
cross-slope direction. The results are compared with the solutions
obtained by the method of image sources and by adiabatic mode
parabolic equations. The paper ends with a brief conclusion.

2. Basic equations and boundary conditions

We consider the propagation of time-harmonic sound in a
three-dimensional waveguide

Ω = {(x, y, z)|0 ≤ x ≤ ∞,−∞ ≤ y ≤ ∞,−H ≤ z ≤ 0}

(the z-axis is directed upward), described by the acoustic
Helmholtz equation

(γ Px)x +

γ Py


y + (γ Pz)z + γ κ2P = 0, (1)

where γ = 1/ρ, ρ = ρ(x, y, z) is the density, κ is the
wave-number. We assume the appropriate radiation conditions at
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infinity in the x, y plane, the pressure-release boundary condition
P = 0 at z = 0 and the rigid boundary condition ∂P/∂z = 0 at
z = −H . The parameters of the medium can be discontinuous at
the nonintersecting smooth interfaces z = h1(x, y), . . . , hm(x, y),
where the usual interface conditions

P+ = P−,

γ+


∂P
∂z

− hx
∂P
∂x

− hy
∂P
∂y


+

= γ−


∂P
∂z

− hx
∂P
∂x

− hy
∂P
∂y


−

,
(2)

are imposed. Hereafter the denotations f (z0, x, y)+ = limz↓z0 f (z,
x, y) and f (z0, x, y)− = limz↑z0 f (z, x, y) are used. Aswill be shown
below, it is sufficient to consider the case ofm = 1, sowe setm = 1
and denote h1 by h.

We introduce a small parameter ϵ (the ratio of the typical
wavelength to the typical size of medium inhomogeneities), the
slow variables X = ϵx and Y = ϵy and the fast variables
η = (1/ϵ)Θ(X, Y ) and ξ = (1/

√
ϵ)Ψ (X, Y ) and postulate

the following expansions for the acoustic pressure P and the
parameters κ2, γ and h:

P = P0(X, Y , z, η, ξ)+
√
ϵP1/2(X, Y , z, η, ξ)+ · · · ,

κ2
= n2

0(X, Y , z)+ ϵν(X, Y , z, ξ),
γ = γ0(X, Y , z)+ ϵγ1(X, Y , z, ξ),
h = h0(X, Y )+ ϵh1(X, Y , ξ).

(3)

To model the attenuation effects, we allow ν to be complex. More
precisely, we put Imν = 2µβn2

0, where µ = (40π log10 e)−1 and
β is the attenuation in decibels per wavelength.

Following the generalized multiple-scale method [10], we
replace the derivatives in Eq. (1) according to the rules
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1
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Given the postulated expansions, the equationunder consideration
becomes
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+

1
ϵ
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
· (P0 + ϵP1 + · · · , )


+ the same term with the Y -derivatives
+ ((γ0 + ϵγ1) (P0z + ϵP1z + · · · , ))z

+ (γ0 + ϵγ1)(n2
0 + ϵν) (P0 + ϵP1 + · · · , ) = 0. (4)

We now put

P0 + ϵP1 + · · · = (A0(X, Y , z, ξ)+ ϵA1(X, Y , z, ξ)+ · · · )eiη.

Using the Taylor expansion, we can formulate the interface
conditions at h0 which are equivalent to interface conditions (2)
up to O(ϵ):

(A0 + ϵh1A0z + ϵA1)+ = (the same terms)−, (5)
((γ0 + ϵh1γ0z + ϵγ1)

× (A0z + ϵh1A0zz + ϵA1z − ϵiΘXh0XA0 − ϵiΘYh0YA0))+

= (the same terms)− . (6)

2.1. The problem at O(ϵ0)

At O(ϵ0)we obtain

(γ0A0z)z + γ0n2
0A0 − γ0


(ΘX )

2
+ (ΘY )

2 A0 = 0, (7)

with the interface conditions A0+ = A0−, (γ0A0z)+ = (γ0A0z)− at
z = h0, and the boundary conditions A0 = 0 at z = 0 and A0z = 0
at z = −H . We seek a solution to problem (7) in the form

A0 = Bj(X, Y , ξ)φ(X, Y , z). (8)

From Eq. (7) we obtain the following spectral problem for φ with
the spectral parameter k2 = (ΘX )

2
+ (ΘY )

2

(γ0φz)z + γ0n2
0φ − γ0k2φ = 0,

φ(0) = 0, φz = 0 at z = −H,
φ+ = φ−, (γ0φz)+ = (γ0φz)− at z = h0.

(9)

This spectral problem, considering in theHilbert space L2,γ0 [−H, 0]
with the scalar product

(φ, ψ) =

 0

−H
γ0φψ dz, (10)

has countably many solutions (k2j , φj), j = 1, 2, . . . where the
eigenfunctions can be chosen as real functions. The eigenvalues
k2j are real and have −∞ as a single accumulation point. The
normalizing condition is

(φ, φ) =

 0

−H
γ0φ

2 dz = 1. (11)

2.2. The problem at O(ϵ1/2) and at O(ϵ1)

The solvability condition for the problem at O(ϵ1/2) is

ΘXΨX +ΘYΨY = 0, (12)
from which we conclude that we can take P1/2 = 0.

2.3. The problem at O(ϵ1)

At O(ϵ1), we obtain

(γ0A1z)z + γ0n2
0A1 − γ0k2j A1

= −iγ0XkjA0 − 2iγ0kjA0X − iγ0kjXu0 + γ1k2j A0 − γ0(ΨX )
2A0ξξ

− the same terms with Y -derivatives

−
∂

∂z
(γ1A0z)− n2

0γ1A0 − νγ0A0, (13)

with the boundary conditions A1 = 0 at z = 0, A1z = 0 at z = −H ,
and the interface conditions at z = h0(X, Y ):

A1+ − A1− = h1(A0z− − A0z+),

γ0+A1z+ − γ0−A1z−

= h1

((γ0A0z)z)− − ((γ0A0z)z)+


+ γ1−A0z− − γ1+A0z+

− ikjh0XA0(γ0− − γ0+)− ikjh0YA0(γ0− − γ0+).

(14)

Multiplying (13) by φj and then integrating the resulting equation
twice from −H to 0 by parts with the use of the corresponding
interface conditions (14), we obtain the solvability condition for
the problem at O(ϵ1)

2i(ΘjXBjX +ΘjYBjY )+ i(ΘjXX +ΘjYY )B

+ ((ΨX )
2
+ (ΨY )

2)Bjξξ + αjBj = 0, (15)

where A0 = Bjφj and αj is given by the following formula
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