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a b s t r a c t

Geometrical shock dynamics (GSD) theory is an appealing method to predict the shock motion in the
sense that it is more computationally efficient than solving the traditional Euler equations, especially for
converging shock waves. However, to solve and optimize large scale configurations, the main bottleneck
is the computational cost. Among the existing numerical GSD schemes, there is only one that has been
implemented on parallel computers, with the purpose to analyze detonation waves. To extend the
computational advantage of the GSD theory tomore general applications such as converging shockwaves,
a numerical implementation using a spatial decompositionmethod has been coupledwith a front tracking
approach on parallel computers. In addition, an efficient tridiagonal system solver for massively parallel
computers has been applied to resolve the most expensive function in this implementation, resulting
in an efficiency of 0.93 while using 32 HPCC cores. Moreover, symmetric boundary conditions have been
developed to further reduce the computational cost, achieving a speedup of 19.26 for a 12-sided polygonal
converging shock.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Focusing of shock waves can generate extreme conditions, such
as high pressure and temperature, at the focal region. Shock focus-
ing occurs in a variety ofman-made andnaturally occurring events,
for example in extracorporeal shock wave lithotripsy [1], iner-
tial confinement fusion [2] and collapse of cavitation bubbles [3].
The first researcher to study shock focusing was Guderley [4],
who developed analytical solutions for converging cylindrical and
spherical shock waves. Following his work, numerous authors
have investigated on this area. Basically, there are two major nu-
merical methods used to study shock wave propagation: one is
the Navier–Stokes equations, and the other is the inviscid Euler
equations if viscosity in the shocked medium can be neglected.
The advantage of these two methods is that a full flow field can
be accurately obtained. However, the strength of the shock front
in the focusing area can be much higher than that of the ini-
tial shock front, resulting in smaller time scales to maintain the
Courant–Friedrichs–Lewy (CFL) condition. In addition, the length
of the shock front in the focusing area can be much smaller than
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that of the initial shock front. In order to resolve all small scales
close to, and in, the focal region, high resolution in both time and
space are required, which can make the computational task very
expensive. Whitham proposed an alternative method [5], named
Geometrical Shock Dynamics (GSD), that describes the motion of
shock waves in a different way. Unlike the Navier–Stokes equa-
tions and the Euler equations, this theory avoids dealing with the
flow field around the shock and only focuses on the curvature of
the shock wave itself. As a result, solving a shock focusing event
withGSD instead of theNavier–Stokes equations or the Euler equa-
tions, the computational complexity is reduced by solving a lower
dimensional problem. In addition, the actual computational cost
may be reduced by more than an order of magnitude depending
on the required grid resolution when dealing with higher dimen-
sional problems. In GSD, the shock front is discretized into small
elements. Between each element, orthogonal trajectories are in-
troduced as rays so that each shock front element can be approxi-
mated to propagate down a tube whose boundaries are defined by
the rays, a so-called ray tube. The main assumption in GSD is that
the motion of the shock only changes with the variation of the ray
tube area. Then, instead of solving the full Euler equations, themo-
tion of the shock can be predicted by deriving the relation between
shock strength, which can be represented by the Mach number,
M , and the area of the ray tube, A. This is the so-called Area-Mach
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number (A–M) relation,
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Here, γ represents the adiabatic index, x denotes the distance in
the ray tube and the cross sectional area A(x) is a function of x, see
Ref. [6] for additional details.

There exists a variety of algorithms to implement GSD numer-
ically. Here, only a part of those works are listed. The method of
characteristics was used by Bryson and Gross [7] to analyze shock
diffractions. Decades later, a front tracking approach was devel-
oped by Henshaw [8] in two dimensions and Schwendeman [9] in
three dimensions. A conservative finite differencemethodwas for-
mulated by Schwendeman [10].Most recently, a fast-marching like
algorithmwas developed by Noumir et al. [11]. Among all these al-
gorithms, the front tracking method is the most used one due to
its computational accuracy and simplicity of implementation. For
example, Schwendeman applied this method to study shock mo-
tion in non-uniformmedia [12]. Best modified it to investigate un-
derwater explosions [13,14], and Apazidis and Lesser utilized it to
comparewith the shock converging experiments [15]. However, in
order to utilize the front trackingmethod to study shockmotion for
large scale applications, the computational cost is still a large bot-
tleneck, which can be addressed through parallel computing tech-
niques.

In our work, the front tracking method has been implemented
on parallel computers and symmetric boundary conditions has
been developed in order to reduce the computational expense dra-
matically.

2. Numerical methods

2.1. Serial scheme

In this study, the numerical implementation of GSD is based on
previous front tracking methods [8,13,14]. A short review about
implementation of the numerical scheme is given as follows. In a
two dimensional condition, the shock front is discretized into N
points denoted by xi(t), where i = 1, 2, . . . ,N . The shock front
propagates along the direction of its normal vector, and the speed
is determined by the A–M relation. The motion of the shock is
described by

dxi(t)
dt

= a0Mi(t)ni(t), i = 1, . . . ,N, (4)

where Mi(t) and ni(t) denote the Mach number and shock front
normal at xi(t), respectively. The speed of sound in ambient air
is fixed as a0 = 1 in all of our calculations. A fourth-order
Runge–Kutta scheme is adopted to numerically integrate equation
(4).

The Mach number, M(t), is calculated by combining the A–M
relation from Eq. (1) with the shock front relation dtA = a0MdxA.
Thus, Eq. (1) can be converted into

dM
dt

=
M

−g(M)

A′

A
. (5)

In Eq. (5), A′ denotes dxA and A′/A can be expressed explicitly
as [13],

A′

A
=
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, (6)

where, as is shown below, the arclength s(t) represents the
geometry of the shock front and n(s(t), t) indicates the norm
vector of the shock front,

si(t) =


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Following [8], there are two extra procedures. One is a point
insertion and deletion approach that maintains the resolution of
the shock front and the CFL condition. Additionally, a time-step
reduction scheme [16] should be applied to replace this approach
for a particular converging shock scenario. The other scheme is
a two-step smoothing procedure to reduce the high frequency
errors. The main focus of this study is to implement the algorithm
for converging shocks. Thus, here the time-step reduction scheme
is adopted. However, the parallel implementation can be coupled
with the point insertion and deletion approach to tackle other
shock wave simulations.

The time-step reduction scheme can be expressed by the
following equation:
∆t < f (R(t),M(t)), (9)
where f (R(t),M(t)) is a function of shock radius R(t) and M(t)
at time t . More details of this scheme can be found in [16]. If this
condition fails, ∆t will be reduced as ∆tnew = 0.75∆t and Eqs. (4)
and (5) are restarted by using ∆tnew.

The two-step smoothing procedure is given as follows:

xi(t) =
1
2
(xi−1(t) + xi+1(t)), (10)

and it is applied every ns iterations, where ns depends on the
time increment,∆t , and the average shock arclength between each
discrete point,∆savg . When∆savg = 0.01, ns is usually set between
10 and 50.

A schematic flow chart shown in Fig. 1 illustrates how this al-
gorithm works. In general, the algorithm consists of four func-
tions during the time marching process. At time t , A′

i/Ai is calcu-
lated first by Eq. (6). The two components ∂x(s(t), t)/∂s(t) and
∂n(s(t), t)/∂s(t) in Eq. (6) can be obtained by applying a cubic
spline interpolation method using discrete data si(t), xi(t) and
si(t), ni(t), i = 1, . . . ,N under adequate boundary conditions,
which vary according to the task settings. This step is named up-
dateAda. The advantage of setting updateAda initially is that it can
also be used to generate the norm vector of the shock front, see Eq.
(8), which is required for updating the shock location in the third
step. Next, a fourth-order Runge–Kutta scheme is employed, see
Eq. (5), to update the Mach number at the current time iteration.
This step is named updateM. In the next function, called updateX,
the shock location for the next time iteration is calculated by using
Eq. (4) so that x(t + ∆t) is obtained. Later, the time-step reduc-
tion scheme is applied to maintain the CFL condition, see Eq. (9).
The next function, updateS, computes s(t + ∆t) through Eq. (7). In
addition, the smoothing procedure, see Eq. (10), is implemented
after updateS. At the end of each iteration, a terminate condition
is given to determine whether the program should be aborted. In
order to run this algorithm, a set of coordinates, xi(t0), and Mach
number, Mi(t0), representing the initial location and strength of
the shock front are given as initial conditions. In addition, updateX
and updateS need to be called before the time marching to obtain
si(t0+∆(t)), which is the arclength for the first iteration. These ini-
tial steps are implemented in the parameter initialization, shown
in Fig. 1.
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