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a b s t r a c t

We indicate a new and a very accurate algorithm for the evaluation of the Generalized Fermi–Dirac
Integral with a relative error less than 10−20. The method involves Double Exponential, Trapezoidal and
Gauss–Legendre quadratures. For the residue correction of the Gauss–Legendre scheme, a simple and
precise continued fraction algorithm is used.
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1. Introduction

The Fermi–Dirac integral (FDI)

Fk(η) =
1

Γ (1 + k)


∞

0

tk dt
et−η + 1

(1)

is needed in a variety of problems involving the Fermi–Dirac
distribution like the calculation of charge densities of semi-
conductor devices. A detailed account is given by Blakemore [1]
for the various exact and approximate expressions available in the
literature with special emphasis on F1/2(η). If the upper limit of
integration is finite, the above integral is called the incomplete FDI.
Goano [2] provides a large and accurate collection of algorithms
to evaluate the ordinary as well as the incomplete FDI. The work
in this area broadly consists of two groups. The first set deals
with series expansions that are valid for small values of η and
the asymptotic approximations which are valid for large values
of η [3–10]. The second set consists of numerical algorithms,
based either on rational approximation [11–13] that combine both
high accuracy and minimum effort or they rely on numerical
integration [14].
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An integral related to the FDI that is needed in astrophysical
problems like the stellar evolution is defined by

Fk(η, θ) =


∞

0

tk
√
1 + θ t/2 dt
et−η + 1

. (2)

This is the Generalized Fermi–Dirac Integral (GFDI) that depends
on three parameters k, η and θ . When the parameter θ is zero, the
GFDI reduces to the FDI without its gamma function term in the
denominator.

As we remarked earlier, a detailed review of the asymptotic
and the series expansions for the FDI is available in Blakemore [1].
For the sake of completeness, here we outline very briefly some of
these approaches. Many of these expressions are derived from the
classical series expansions provided by McDougall and Stoner [6]
and Dingle [4,5]. The following is a typical one valid for integer and
half-integer values [3].

Fk(η) =

∞
r=1

(−1)r+1erη r−(k+1)
; η ≪ 0

Fk(η) = cos(kπ)Fk(−η) +
ηk+1

Γ (k + 2)
[1 + Rk(η)]; η > 0

Rk(η) =

∞
r=1

αrΓ (k + 2)
η2r Γ (k + 2 − 2r)

; αr =

∞
n=1

(−1)n+1 2 n−2r .

For evaluating the FDI, Goano [7] utilizes the fact that the term
1/[et−η

+ 1] can be expanded in a geometric series for the cases
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t > η and the t < η separately. The resulting series is integrated
term by term and the final quantities are expressed in terms
of the Kummer confluent hypergeometric functions of the first
and second kind, M(a, b, z) and U(a, b, z), respectively, for which
efficient algorithms exist.

Fk(η) =
ηk+1

Γ (k + 2)


1 +

∞
n=1

(−1)n−1
[(k + 1)U(1, k + 2, nη)

−M(1, k + 2, −nη)]


.

Bhagat et al. [13] derive series expansion for the FDI. The approach
here is to expand the term 1/[et−η

+1] in a series after appropriate
manipulations and then integrate the resulting integrand term by
term. Next, to expedite convergence, acceleration technique like
the Levin transform is made use of. It must be noted that this
approach works better if η is large. Again, for the GFDI, the term√
1 + θ t/2 is also expanded in a series (possible only for small

values of θ like 10−3) and the resulting series is integrated term
by term and this is followed by convergence acceleration.

The FDI can be expressed in terms of the Zeta or the Polyloga-
rithm or the incomplete Gamma functions. Below, we indicate an
exact series expression for Fk(η) in terms of the incomplete Gamma
function [15]. We note the Mittag-Leffler expansion of sech(z)
function [16] which leads to the following modification of the de-
nominator of the integrand of the FDI.

sech(z) =
1

cosh(z)
= π

∞
l=0

(−1)l (2l + 1)
z2 + [(2l + 1)π/2]2

1
et−η + 1

=
e−(t−η)/2

2 cosh[(t − η)/2]
.

With the substitution above, we get the FDI as

al = η + i(2l + 1)π; φl = tan−1
[(2l + 1)π/η];

l = 0, 1, 2, . . .

Fk(η) =
2πeη/2

Γ (k + 1)

∞
l=0

(−1)l (2l + 1)


∞

0

tk e−t/2 dt
(t − η)2 + [(2l + 1)π ]2

Fk(η) = 2 Im


∞
l=0

ei[π(k−1/2)−kφl] [η2

+ ((2l + 1)π)2]k/2 Γ (−k, −a∗

l /2)


; k > (−1).

After this brief outline of the series expansions, we turn to
the numerical evaluations based on quadrature. Both Pichon and
Sagar [17,18] use themodified Gauss–Laguerre schemes to achieve
a better accuracy. Gautschi also constructs modified Gaussian
schemes [19]. But these three methods [17–19] need a lot of com-
putational effort since the weight and the node generation is a
non-trivial task and also the weights and nodes change with the
parameters k, η and θ . The GFDI and its derivative with respect
to its parameters were evaluated by Gong et al. [20] by splitting
(0, ∞) into four intervals. The Gauss–Legendre scheme is used in
the first three intervals and the Gauss–Laguerre scheme is used in
the last interval. Here, the choice of break points is by trial and er-
ror.

The convergence of any quadrature scheme for the evaluation
of the integrals defined by Eqs. (1,2) is impaired by the
singularities of the integrands. If k takes half-integer values (as
in the case of the semiconductor device modeling) like k =

−(1/2), (1/2), (3/2), (5/2), . . . , then the origin t = 0 is a branch
point. In addition, the integrands of both the GFDI and the FDI have
a countable infinity of simple poles at tj defined by tj = η + i(2j +

1)π; j = 0, ±1, ±2, . . . . When k is a half-integer, the branch
point singularity can be removed by setting t = x2. Natarajan
and Mohankumar employed a variety of quadrature schemes that
took care of the singularities which resulted in reduced number of
quadrature terms. Trapezoidal and Gauss–Legendre schemes with
the correction terms for the poles were employed [14,21,22]. The
clustering of the quadrature nodes that is inherent in numerical
integration methods like the TANH, the IMT and the DE schemes
was also profitably exploited to handle the singularities of these
integrands [23,24].

2. Existing methods for the FDI and the GFDI evaluation

In this section, we discuss our earlier methods for the evalua-
tion of the FDI and the GFDI. This will help us to identify the im-
provements that are needed for our earlier algorithms. In addition,
it provides the necessary background for the new algorithms that
are presented in the next two sections.

For the FDI needed in semiconductor applications, typical k
values belong to the set {−(1/2), (1/2), (3/2), (5/2)} and typical
η values lie in the range [−10, 50]. For this range of parameters, we
first make a change of the integration variable from t to x defined
by t = x2 and this has the positive effect of removing the branch
point singularity at the origin. The resulting FDI (with an integrand
that is even) and its new singularities {zj} are given below and for
the sake of simplicity, we omit the factor 1

Γ (1+k) .

Fk(η) =


∞

−∞

x2k+1 dx

ex2−η + 1
(3)

zj = ±


η + i(2j + 1)π; j = 0, ±1, ±2, . . . . (4)

A simple trapezoidal scheme with residue correction for the poles
{zj} of this integrand can yield a double precision accuracy (i.e a
minimum of 14 digit accuracy) with a maximum of 29 quadrature
terms and 7 residue correction termswith η in the range [−10, 50]
and for half-integer k values. This accuracy stemming from this
very modest computational requirements must be sufficient for
routine estimation of the FDI. These results were reported in
Mohankumar et al. [14]. Table 1 gives sample values of the FDI
without its gamma function term. An algorithm based on this
scheme is available as a matlab routine called fermi.m that can be
freely downloaded by users [25]. For the sake of completion, a brief
derivation of this trapezoidal scheme, the residue correction and its
discretization error are outlined in Appendix A.

For the above mentioned scheme, it must be noted that the
number of trapezoidal terms is proportional to η1/2. Hence, for
large η values, this implies more computational cost. To overcome
this aspect, the recent quadrature methods, namely, the TANH, the
IMT and the Double Exponential (DE) schemes were employed.
Essentially, all the three methods are just trapezoidal schemes
after a specific change of integration variable. We only outline
the DE scheme since it is superior to the other two methods. The
details of the TANH and the IMTmethods can be found inNatarajan
et al. [23]. With t and u as the old and the new variables, the DE
transformation introduced by Takahasi andMori [26,27] is defined
as follows.

t ∈ (a, b); u ∈ (−∞, ∞) (5)

tk = φ(uk) = (1/2)(b + a) + (1/2)(b − a) tanh
π

2
sinh(uk)


(6)

dt
du

= φ′(u) =
π(b − a)

4
sech2

π

2
sinh(u)


cosh(u) (7)

uk = kh, k = 0, ±1, ±2, . . . . (8)

tk, the images of the equi-spaced nodes uk get clustered at the
ends t = a and t = b of the old interval (a, b). This specific
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