
Computer Physics Communications 207 (2016) 274–281

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Exact diagonalization of quantum lattice models on coprocessors
T. Siro ∗, A. Harju
Aalto University School of Science, P.O. Box 14100, 00076 Aalto, Finland

a r t i c l e i n f o

Article history:
Received 20 July 2015
Received in revised form
24 May 2016
Accepted 6 July 2016
Available online 15 July 2016

Keywords:
Tight binding
Hubbard model
Exact diagonalization
GPU
CUDA
MIC
Xeon Phi

a b s t r a c t

We implement the Lanczos algorithm on an Intel Xeon Phi coprocessor and compare its performance to a
multi-core Intel Xeon CPU and an NVIDIA graphics processor. The Xeon and the Xeon Phi are parallelized
with OpenMP and the graphics processor is programmed with CUDA. The performance is evaluated by
measuring the execution time of a single step in the Lanczos algorithm. We study two quantum lattice
models with different particle numbers, and conclude that for small systems, the multi-core CPU is the
fastest platform, while for large systems, the graphics processor is the clear winner, reaching speedups of
up to 7.6 compared to the CPU. The Xeon Phi outperforms the CPUwith sufficiently large particle number,
reaching a speedup of 2.5.

© 2016 Published by Elsevier B.V.

1. Introduction

In recent years, there has been tremendous interest in utilizing
coprocessors in scientific computing, including condensed matter
physics [1–4]. Most of the work has been done on graphics pro-
cessing units (GPU), resulting in impressive speedups compared
to CPUs in problems that exhibit high data-parallelism and benefit
from the high throughput of the GPU. In 2013, a new type of copro-
cessor emerged in the market, namely the Xeon Phi by chip manu-
facturer Intel. The Xeon Phi is based on Intel’smany integrated core
(MIC) architecture, and features around 60 CPU cores that can be
easily programmed with existing paradigms, such as OpenMP and
MPI. The performance of the Xeon Phi has also already been inves-
tigated in some computational physics research areas with mixed
results in comparison to GPUs [5–7].

In this work, we apply the Xeon Phi coprocessor to solving the
ground state energy of a quantum lattice model by the Lanczos
algorithm and compare its performance to a multi-core CPU and a
GPU. Previously, the Lanczos algorithmhas been implemented on a
GPUwith speedups of up to around 60 and 100 in single and double
precision arithmetic, respectively, in comparison to a single-core
CPU program [8].

∗ Corresponding author.
E-mail address: topi.siro@aalto.fi (T. Siro).

We examine the tight binding Hamiltonian

H = −t

⟨ij⟩


σ=↑,↓

(cĎi,σ cj,σ + h.c), (1)

where ⟨ij⟩ denotes a sum over neighboring lattice sites, cĎi,σ and
ci,σ are the creation and annihilation operators which respectively
create and annihilate an electron at site i with spin σ , and
ni,σ = cĎi,σ ci,σ counts the number of such electrons. The hopping
amplitude is denoted by t . The tight-binding model describes
free electrons hopping around a lattice, and it gives a crude
approximation of the electronic properties of a solid. The model
can be made more realistic by adding interactions, such as on-site
repulsion, which results in the well-known Hubbard model [9]. In
our basis, however, such interaction terms are diagonal, rendering
their effect on the computational complexity insignificant when
we consider operating with the Hamiltonian on a vector. The
results presented in this paper therefore apply to a wide range of
different models.

We will solve the lowest eigenvalue, i.e. the ground state en-
ergy, of the Hamiltonian numerically with the exact diagonaliza-
tion (ED)method. This simplymeans forming thematrix represen-
tation of H in a suitable basis and using the Lanczos algorithm to
accurately compute the ground state energy. The major advantage
of this method is the accuracy of the results, which are essentially
exact up to the numerical accuracy of the floating point numbers.
The downside is that using the full basis is very costly, since its size

http://dx.doi.org/10.1016/j.cpc.2016.07.018
0010-4655/© 2016 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.cpc.2016.07.018
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2016.07.018&domain=pdf
mailto:topi.siro@aalto.fi
http://dx.doi.org/10.1016/j.cpc.2016.07.018


T. Siro, A. Harju / Computer Physics Communications 207 (2016) 274–281 275

Fig. 1. The two lattice geometries. (Top) A 1D lattice with nearest neighbor
hoppings. (Bottom) A checkerboard lattice with complex nearest-neighbor
hoppings (the arrows indicate the sign of the complex phase), real next-nearest
neighbor hoppings with alternating sign (indicated by the dashed and solid lines)
and real third nearest-neighbor hoppings (not drawn for clarity).

scales exponentially with increasing system size and particle num-
ber. This means that we are limited to quite small systems. Despite
this limitation, the ED method has been successful in many very
topical areas of physics, including e.g. the topological properties of
condensed matter systems [10–12].

2. Exact diagonalization

2.1. The Hamiltonian

In a lattice with Ns sites with N↑ spin up electrons and N↓
spin down electrons, the dimension of the Hamiltonian is just the
number of ways of distributing the electrons into the lattice, taking
into account the Pauli exclusion principle that forbids two or more
electrons of the same spin from occupying the same site. Thus, the
dimension is

dimH =

Ns

N↑


Ns

N↓


. (2)

The size of the basis grows extremely fast. For example, in the half-
filled case where N↑ = N↓ = Ns/2, for 12 sites dimH = 853776,
for 14 sites dimH ≈ 11.8×106 and for 16 sites dimH ≈ 166×106.
In addition, the matrices are very sparse, because the number of
available hops, and thus the number of nonzero elements in a row,
grow only linearly while the size of the matrix grows exponen-
tially.

We study two different lattice geometries, presented in Fig. 1.
The first is a simple 1-dimensional lattice with nearest-neighbor
hoppings. We use a lattice with 26 and 18 sites for the one and
two spin species cases, respectively. The other is a checkerboard
lattice introduced in Ref. [13]. It is a widely studied lattice, because
with a nearest-neighbor interaction, an analogue to the fractional
quantum Hall effect can be observed in the lattice without an
externalmagnetic field [10]. It also contrasts the 1D lattice because
it is two-dimensional and has twelve hoppings per site, compared
to only two in the 1D lattice. This leads to a much denser hopping
Hamiltonian. We use a checkerboard lattice with 30 and 18 sites
for the one and two spin species cases, respectively. In all lattices,
periodic boundary conditions are always used.

For a detailed description of forming and storing the Hamilto-
nian, see Ref. [8]. A similar scheme has also been used in Ref. [14].

Fig. 2. An example of using the ELL format. It produces two smaller matrices from
the initial matrix. In practice, these will be converted to vectors in column-major
order for the GPU and row-major order for the CPU and the Xeon Phi. The stars
denote padding and they are set to zero.

To summarize, the Hamiltonian can be split into spin up and spin
down parts as

H = H↑ ⊗ I↓ + I↑ ⊗ H↓, (3)

where Iσ is the identity operator for electrons with spin σ and
⊗ is the tensor product. The basis states for a single spin species,
up or down, are represented by integers whose set and unset bits
correspond to occupied and unoccupied sites, respectively. Then,
the hopping Hamiltonians H↑ and H↓ are computed in the basis
and stored in the memory in the ELL sparse matrix format.

The ELL format stores a sparse matrix into two dense matrices
that contain the nonzero matrix elements and the corresponding
column indices. Thewidth of thematrices is themaximumnumber
of nonzero elements per row in the originalmatrix. For an example
of the ELL sparse matrix format, see Fig. 2. The nonzero density for
the matrices we have used ranges from 10−3 to 10−6. We use ELL
instead of other standard formats, such as CSR, because in H , there
is quite little variation in the number of nonzeros per row. This
means that we do not have to add a lot of padding zeros into the
ELL format matrices. Also, in our tests, we found the performance
with CSR to be essentially identical to ELL, so we use the simpler
method.

2.2. The Lanczos algorithm

Because of the very fast growth of the Hilbert space dimension
as a function of the particle number, fully diagonalizing the
Hamiltonian is only possible for rather small systems andwith only
a few particles. Usually, we are mostly interested in the smallest
eigenvalues and states. These can be accurately approximatedwith
iterative algorithms, one of which is the Lanczos algorithm [15].

In the Lanczos algorithm, the Hamiltonian is projected onto an
orthogonalized basis in a Krylov subspace, defined by

Km(f ,H) = span(f ,Hf ,H2f , . . . ,Hm−1f ), (4)

where f is a random starting vector and m is the Krylov space
dimension. The result of the Lanczos iteration is a tridiagonal
matrix, i.e. one with nonzero elements only on the main diagonal
and the first sub- and superdiagonals. The dimension of the
resulting matrix is equal to m. As m increases, the lowest (and
highest) eigenvalue of the matrix gives an increasingly accurate
approximation of the corresponding eigenvalue of H . Importantly,
sufficient convergence occurs typically already for m ≈ 100, even
when the Hamiltonian matrix is very large.

In Algorithm 1, we give the pseudocode for the Lanczos
algorithm. It generates the so called Lanczos basis, {f1, f2, . . . , fm},



Download English Version:

https://daneshyari.com/en/article/4964635

Download Persian Version:

https://daneshyari.com/article/4964635

Daneshyari.com

https://daneshyari.com/en/article/4964635
https://daneshyari.com/article/4964635
https://daneshyari.com

