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a b s t r a c t

A semi-analytical geometric integrator of guiding centre orbits in an axisymmetric tokamak is described.
The integrator preserves all three invariants of motion up to computer accuracy at the expense of reduced
orbit accuracy and it is roughly an order ofmagnitudemore efficient than a direct solution of the equations
of guiding centre motion with a standard high order adaptive ODE integrator.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

An evaluation of the distribution function and/or its moments
by direct modelling of particle orbits is widely used in plasma
physics (see, e.g., codes like EUTERPE [1,2] or ASCOT [3]). An ef-
ficient algorithm for calculation of trajectories of charged particles
in complex (quasi-)stationary magnetic and electric fields is one
of the key issues in such codes because of the high number of test
particle orbits required tominimize the statistical error of such cal-
culations, which scales inversely with the square root of the num-
ber of test particles. This issue is especially important for global
transport modelling (e.g., see Ref. [4]) where the profiles of plasma
parameters are calculated self-consistently from test particle tra-
jectories, which have to be traced over the profile relaxation (con-
finement) time.

Within transport modelling, computation of stochastic test
particle orbits [5] requires the solution of guiding centre equations
[6,7], which is usually performed with help of general-purpose
ODE integrators. In case of axisymmetric systems (tokamaks) the
guiding centre motion is fully integrable, because there exist
three integrals of motion, which fully determine each orbit in the
5D phase space: The total energy w, magnetic moment µ and
the canonical toroidal angular momentum pϕ , respectively are
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with electrostatic potentialΦ , magnetic field module B, co-variant
toroidal component of the magnetic field Bϕ , co-variant toroidal
component of the vector potential Aϕ , speed of light c , particle
charge e, mass m, perpendicular velocity v⊥, and parallel velocity
v∥. An accurate conservation of the invariants (1) is of primary
importance for transport modelling in drift kinetic or drift fluid
approximationwhile other accuracy requirements related to orbits
can be significantly relaxed. Algorithms with such exact (up to
computer accuracy) conservation of invariants are called geometric
integrators (see, e.g., Ref. [8]). These integrators preserve the
geometry of the exact phase space flow (in particular, orbits
resulting from the integrator of this paper stay exactly closed in
the poloidal plane ϕ = const unless they cross the boundary of
the computation domain), but the orbits do not necessarily satisfy
Hamiltonian equations of motion with some (slightly modified)
Hamiltonian as in the case of the symplectic integrators [9] being
a sub-class of geometric integrators.

In the following sections we will introduce and study such an
integrator suitable for transport modelling of axisymmetric fusion
devices. In a comparison with commonly used general-purpose
ODE integrators one can expect two advantages: First, in numerical
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efficiency; and second, such an algorithm should be less sensitive
to the accuracy of the representation of the electromagnetic field
allowing also for numerical inaccuracies resulting, in particular,
from the statistical noise in the data.

2. Derivation of the integrator

In general magnetic field geometry, equations of guiding centre
motion with invariants w and µ used as velocity space variables
are [7]
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whereB andA aremagnetic field and vector potential, respectively,
and v∥ = v∥(r, w,µ, σ ) is determined by the first two Eqs. in (1)
and parallel velocity sign σ = ±. In axisymmetric geometry using
cylindrical variables (R, ϕ, Z), equations of motion omitting the
symmetry variable ϕ take the form
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The varying part of Bϕ = Bϕ(ψ) as a function of poloidal flux
ψ = −Aϕ is of the order of plasma beta or of the square of the
ratio of the poloidal and toroidal field strengths. In most tokamaks
this variation is only a few percent and can be safely ignored. With
this assumption, Eqs. (3) are rewritten as
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where a Hamiltonian like function H is
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Particle orbits are then determined by the condition H = 0. A
numerically efficient low order approximation of these orbits can
be obtained if one uses in (5) a linear interpolation for the following
functions of coordinates x = (x1, x2) ≡ (R, Z),

fA(x) ≡ Aϕ, fB(x) ≡
1
B
, fΦ(x) ≡

Φ

B2
, (6)

discretized on a triangularmesh required for the continuous piece-
wise linear interpolation. As a result, H (5) becomes a continuous
piecewise quadratic function,
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where the coefficients aij are constant within a given triangle and
are determined by initial values of the particle coordinates x0 and
the velocity components v⊥0 and v∥0 in this triangle as follows,
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Here, α = e
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−1, and the constants xia are the solution to the
following linear equation set,
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The spatial particle trajectories,H = 0, are then continuous piece-
wise second order curves. Note that vector potential and magnetic
field module in (6) are treated as independent functions within
the above linear interpolation, which does not hold the relation
B = |∇ × A| anymore. Consequently, gradient-B drift is retained
in the orbits while it would be absent if Bwould be computed from
that relation. Due to continuous interpolation of all functions of
the coordinates in Eq. (1), orbits are continuous also in the veloc-
ity space where preferable variables are (v⊥, v∥). Those are more
convenient for modelling of collisions and of anomalous trans-
port, both required in transport simulations. A parametric (time-
dependent) form of orbit segments is obtained from the equations
of motion (4), which are further simplified by ignoring the Lar-
mor radius correction, h∗

∥
→ 1 and by replacing R with a con-

stant R̄ being the radial coordinate of the centre of mass of a given
triangle,

ẋi =
(−1)i

R̄

2
j=1

a3−i,j

xj − xja


. (10)

This approximation does not affect the orbit shape. Namely, par-
ticles move along exactly the same orbits in the phase space but
time dependence of phase space coordinates is slightly changed.
Depending on the sign of the determinant D = det(aij), orbits are
either ellipses (D > 0) or hyperbolas D < 0, respectively given by

xi = xia + xic cos(ω∆t)+ xis sin(ω∆t), D > 0,

xi = xia + xic cosh(ω∆t)+ xis sinh(ω∆t), D < 0, (11)

where∆t is the integration time step,
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The numerical implementation of this integrator is quite
straightforward: One follows the test particle for the time step∆t
(usually determined by collisions or anomalous transport) using
Eqs. (11) and modifies its velocities (v⊥, v∥) according to the
conservation laws (1). If∆t exceeds the time to reach a boundary of
the triangle, one stops the trajectory at this point of intersection. Its
coordinates, xb, satisfy a quadratic equation, and the corresponding
time can be found from (11) for x = xb. Then one follows the
particle in the next triangle using the point of intersection as a new
starting point x0 and its local velocities as new v⊥0 and v∥0.

3. Benchmarking

We now compare the results obtained by the geometric inte-
grator derived in the previous section and a conventional adaptive
ODE integrator, odeint (Ref. [10]). The magnetic configuration we
use is ITER-like (the same had been used in Ref. [4]) with zero elec-
tric field everywhere.

The triangular mesh required for the geometric integrator has
been produced from a nearly orthogonal field-aligned quadran-
gular mesh used for fluid modelling by the B2 code [11]. The
odeint [10] solver has been employed here for the full 3D system
of guiding centre equations [7] in the covariant representation [12]
for cylindrical coordinates. A very accurate divergence-free repre-
sentation of the magnetic field based on 2D spline interpolation
(5th order) of the poloidal flux function has been used for this in-
tegrator, which acts as a reference case.

As an example, a few collisionless trajectories calculated by
the geometric integrator for trapped deuterium and iron ions
are presented in Fig. 1 together with pertinent orbits from the
reference case. In addition, the used triangular mesh is also shown.
All orbits almost coincide in the overview figure (a), but the
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