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a b s t r a c t

A posteriori error estimation and control methods are proposed for a quantum corrected energy balance
(QCEB) model that describes electron and hole flows in semiconductor nanodevices under the influence
of electrical, diffusive, thermal, and quantum effects. The error estimation is based on the maximum
norm a posteriori error estimate developed by Kopteva (2008) for singularly perturbed semilinear
reaction–diffusion problems. The error estimate results in three error estimators called the first-, second-,
and third-order estimators to guide the refinement process. The second-order estimator is shown to be
most effective for adaptivemesh refinement. The QCEBmodel is scaled to a dimensionless coupled system
of seven singularly perturbed semilinear PDEswith various perturbation parameters so that the estimator
can be applied to each PDE on equal footing. It is found that the estimator suitable for controlling the
approximation error of one PDE (one physical variable) may not be suitable for another PDE, indicating
that different parameters account for different boundary or interior layer regions as illustrated by two
different semiconductor devices, namely, a diode and a MOSFET. A hybrid approach to automatically
choosing different PDEs for calculating the estimator in the adaptive mesh refinement process is shown
to be able to control the errors of all PDEs uniformly.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In order to keep pace with the increasing speed of miniaturiza-
tion ofmodern semiconductor technology, a great variety of device
models that deal with quantum effects, accuracy, robustness, and
efficiency in real-life simulations have been intensively developed
and tested in recent years, see e.g. [1–17] and references therein.
A class of macroscopic quantummechanical models that are based
on the density-gradient (DG) theory of Ancona and Tiersten [1] has
been shown to effectively simulate multi-dimensional metal ox-
ide semiconductor field effect transistor devices (MOSFET) [18–20]
with gate lengths ranging from 50 nm down to 6 nm [2,4,5,7,8,15,
21,22]. The DG theory is derived from Bohm’s quantum theory [23]
in semiconductor context. It generalizes the equation of state for
an ideal electron gas to include DG dependence and corrects the
electric field by adding the Bohm potential in the drift term. The
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macroscopic DGmodels thus exhibit the essential quantum effects
of nonlocality, confinement, and tunneling.

In this paper, we consider in particular the quantum corrected
energy balance (QCEB)model proposed in [5] that extends the clas-
sical drift–diffusion (DD) model to include the DG quantum po-
tential and energy balance equations in order to deal with both
quantum effect and hotspot problems in nanoscale device de-
sign [24,25]. The QCEB model has been shown by Jüngel [9] as a
simplified balance model that can be derived from the quantum
energy transport (QET) equations based on the Chapman–Enskog
expansion and Fermi–Dirac distributions. The simplification is
made by assuming Maxwellian distributions, parabolic energy
band structures, and the inelastic collision approximated by a
Fokker–Planck ansatz [9]. FormoreQETmodels,we refer to Refs. [9,
11,16,21,26].

The QCEB model consists of seven PDEs in which every PDE is
self-adjoint and semilinear with respect to its unknown function.
The self-adjoint form is due to the Slotboom formulation of
continuity and energy balance equations. It is well known that
the Slotboom formulation incurs overflow problems in computer
implementation for micronscale semiconductor devices to which
the applied voltage is much greater than that to nanoscale
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devices. The applied voltage is scaled down to about 1 V in
nanodevices. In other words, the overflow problem is no longer a
difficult issue for simulating nanodevices by self-adjoint models.
Moreover, the ill-conditioning of Slotboom-type matrices in
discretization can also be alleviated by suitable scalings for the
matrix system [5,27]. The self-adjoint formulation provides many
useful properties for the resulting nonlinear algebraic systems such
as global convergence and fast linear solvers because Slotboom-
type matrices are diagonally dominant M-matrices [28–30] that
lead to these appealing properties [5,29–32].

We reformulate the QCEB model here to a dimensionless
form of singularly perturbed system involving seven singular
perturbation parameters called Debye (one), Planck (two for
electrons and holes), DD (two), and EB (two) parameters. The
Debye and Planck parameters are conventional parameters related
to the electrostatic and quantum effects, respectively. The DD
and EB parameters are associated with the diffusivity and
thermal conductivity of a device in terms of the electrostatic and
quasi-Fermi potentials, respectively. It is shown that the lowest
order of the EB parameter is of O(10−33) whereas that of the
conventional Debye parameter is of O(10−5). This indicates that
the investigation of singularities in nanodevice models should be
extended to all parameters in a model other than just one.

Across the junction between different types of semiconductors
in a device or the interface of semiconductors andmetal (or oxide),
there are thin regions – called interior or boundary layers – of rapid
variations of electrostatic and quantum potentials, charge carrier
densities, or temperatures [5]. To obtain reliable approximations
of layer solutions in an efficient way, one may need to use
locally refined meshes that are fine in layer regions and coarse
elsewhere. The refinement schemes can be categorized into two
classes: a priori refinement using special meshes such as those of
Shishkin and Bakhvalov [33,34] and a posteriori refinement using
an adaptive algorithm that automatically generates fine meshes
in layer regions starting with a simple initial mesh provided
that a reliable error estimator is used to guide the refinement
process [35–38]. The first class is very successful for a single
PDE for which the layer region is a priori known so that the
entire domain can be divided into two uniform-mesh regions,
one is coarse and the other is fine. The division is determined by
the perturbation parameter [34]. The resulting piecewise-uniform
mesh then leads to a uniformly convergent approximation of the
singularly perturbed PDE in the discrete maximum norm, i.e., the
convergence is independent of the size of the singular perturbation
parameter.

The adaptive mesh refinement scheme proposed in this paper
belongs to the second class. The first class schemes are not suitable
for the QCEB model due to the following reasons. (i) The doping
junctions are curves, together with the material interfaces, that
may yield overly refined piecewise-uniformmeshes. (ii) The QCEB
model has seven singular perturbation parameters for which it is
impossible to determine a priori their strengths and locations of
singularity since these parameters depend on physical conditions
that may vary with devices as well as physical conditions.

A variety of a posteriori error estimators have been proposed in
the literature. Most of them are based on the global error in weak
energy norms for a large class of simple linear elliptic model prob-
lems [39–43]. The QCEB model consists of convection–diffusion
PDEs in which the transport process dominates in junction and
contact regions while the diffusion process is confined to other
regions. The current state of error estimators for the convection-
dominated problems is still far from satisfactory [44] because the
error estimators derived fromweak norms depend on an excessive
power of the small diffusion parameter [45,46].

The novelty of Kopteva’s estimate [33] is that it holds true uni-
formly in the small diffusion parameter for both boundary and in-
terior layer solutions and is in the maximum norm, which is suffi-

ciently strong to capture the extremely thin layer solutions of nan-
odevice models. Moreover, it is free of the mesh aspect ratio con-
dition generally required by the standard finite element estimates
[33,45]. We find that these properties are quite useful for the 1-
irregular rectangular mesh refinement scheme used here, i.e., ev-
ery finite element edge contains at most one irregular node, since
the estimate is derived from finite difference (rectangular) approx-
imation.

Three error estimators, namely, the first-, second-, and third-
order estimators can be derived from Kopteva’s estimate involving
the first, second, and third derivative approximations of the so
lution of a singularly perturbed PDE, respectively. It has been
shown that the second estimator ismost effective for both uniform
and Bakhvalov meshes in [33], so as shown in this paper for
adaptive mesh. The effectiveness is determined by the ratio of the
estimator to the exact error of a constructed PDE in the maximum
norm with respect to various degrees of freedom (DOFs) of
meshes. The second estimator is then used to guide the refinement
process in QCEB simulations on two semiconductor devices, i.e., a
diode and a MOSFET. However, a device may exhibit different
types of singularities in different regions where different physical
properties are governed by different PDEs in amodel. For example,
the quantumpotential of QCEB has a boundary layer near the oxide
region while the hot carriers are primarily concentrated along the
junction layer or near the drain contact [5].We thus face a problem
of which PDE or which singular perturbation parameter should
be used to calculate the estimator during the adaptive refinement
process so that the approximation errors of all PDEs in QCEB can be
uniformly controlled. The main contribution of the present work
is to present a new formulation of QCEB with different types of
singular perturbation parameters that can be used to study various
layers of state variables in a device and to uniformly control the
errors of all these variables. For this, we propose a hybrid method
that automatically calculates the estimator via different PDEs in
QCEB during the adaptive refinement process.

The rest of the paper is organized as follows. In Section 2,
we outline the QCEB model proposed in [5]. A full dimensionless
formulation of the model with singular perturbation parameters is
then given in Section 3. For clarity, we recall Kopteva’s theorem in
Section 4 and derive the three error estimators for the 1-irregular
mesh refinement scheme. In Section 5, numerical results of a
singularly perturbed PDE with exact solution, diode, and MOSFET
are given to show the effectiveness of the second estimator,
nonuniform convergence of all PDEs with the estimator fixed to
one PDE, and uniform convergence with the hybrid error control
method. Concluding remarks are given in Section 6.

2. A quantum energy-transport model

The QCEB model of [5] is
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