
Accepted Manuscript

Concurrent Cuba

T. Hahn

PII: S0010-4655(16)30128-X
DOI: http://dx.doi.org/10.1016/j.cpc.2016.05.012
Reference: COMPHY 5942

To appear in: Computer Physics Communications

Received date: 30 August 2014
Revised date: 3 May 2016
Accepted date: 6 May 2016

Please cite this article as: T. Hahn, Concurrent Cuba, Computer Physics Communications
(2016), http://dx.doi.org/10.1016/j.cpc.2016.05.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.cpc.2016.05.012


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

MPP–2014–327
PACS: 02.60.Jh

Concurrent Cuba

T. Hahn
Max-Planck-Institut für Physik

Föhringer Ring 6, D–80805 Munich, Germany

July 27, 2015

Abstract

The parallel version of the multidimensional numerical integration package Cuba
is presented and achievable speed-ups discussed. The parallelization is based on the
fork/wait POSIX functions, needs no extra software installed, imposes almost no
constraints on the integrand function, and works largely automatically.

1 Introduction

Cuba is a library for multidimensional numerical integration written in C99 with interfaces
for Fortran, C/C++, and Mathematica [1, 2, 3]. Cuba offers a choice of four independent
routines for multidimensional numerical integration, Vegas [4], Suave [1], Divonne [5], and
Cuhre [6], with very different characteristics.

Numerical integration is perfectly suited for parallel execution, which can significantly
speed up the computation as it generally incurs only a very small overhead. Several features
for concurrent sampling were added in Cuba versions 3 and 4, for both parallelization and
vectorization. It was the objective to enable easy, ideally transparent, use of parallel Cuba,
and led to the following design decisions:

1. No kind of Message Passing Interface is used, as that requires extra software to be
installed. That is, the parallelization is restricted to one computer, using operating-system
functions only. A standard setup these days is a single CPU with a number of cores, say 4
or 8. Utilizing many more compute nodes, as one could potentially do with MPI, is more
of a theoretical option anyway since the speed-ups cannot be expected to grow linearly, see
Sect. 4.2 on Performance.

2. Cuba uses fork/wait rather than the pthread* functions. The latter are slightly
more efficient because parent and child share their memory space, but for the same rea-
son they also require a reentrant integrand function, and the programmer may not have
control over reentrancy in all languages (e.g. Fortran’s I/O is typically non-reentrant).
Also OpenMP, available with many compilers nowadays, has not been used since the Cuba
library would depend on the way the integrand was compiled then. fork on the other

1

*Manuscript



Download English Version:

https://daneshyari.com/en/article/4964641

Download Persian Version:

https://daneshyari.com/article/4964641

Daneshyari.com

https://daneshyari.com/en/article/4964641
https://daneshyari.com/article/4964641
https://daneshyari.com

