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a  b  s  t  r  a  c  t

[18F]-Fluorodeoxyglucose  (FDG)  positron  emission  tomography–computed  tomography  (PET–CT)  scans
of lymphoma  patients  usually  show  disease  involvement  as  foci  of  increased  radiotracer  uptake.  Existing
methods  for  detecting  abnormalities,  model  the  characteristics  of  these  foci;  this  is  challenging  due  to
the  inconsistent  shape  and  localization  information  about  the  lesions.  Thresholding  the  degree  of  FDG
uptake  is  the  standard  method  to separate  different  sites  of  involvement.  But may  fragment  sites  into
smaller  regions,  and  may  also  incorrectly  identify  sites  of normal  physiological  FDG  uptake  and  normal
FDG excretion  (sFEPU)  such  as the kidneys,  bladder,  brain  and  heart.  These  sFEPU  can  obscure  sites
of  abnormal  uptake,  which  can  make  image  interpretation  problematic.  Identifying  sFEPU  is therefore
important  for improving  the  sensitivity  of lesion  detection  and  image  interpretation.  Existing  methods
to  identify  sFEPU  are  inaccurate  because  they  fail to account  for  the  low  inter-class  differences  between
sFEPU fragments  and  their  inconsistent  localization  information.  In  this  study,  we address  this  issue by
using  a multi-scale  superpixel-based  encoding  (MSE)  to  group  the  individual  sFEPU  fragments  into  larger
regions,  thereby,  enabling  the extraction  of highly  discriminative  image  features  via domain  transferred
convolutional  neural  networks.  We  then  classify  there  regions  into  one  of  the  sFEPU  classes  using  a
class-driven  feature  selection  and  classification  model  (CFSC)  method  that  avoids  overfitting  to the  most
frequently  occurring  classes.  Our  experiments  on  40 whole-body  lymphoma  PET-CT  studies  show  that
our method  achieved  better  accuracy  (an  average  F-score  of 91.73%)  compared  to existing  methods  in
the  classification  of sFEPU.

©  2016  Published  by  Elsevier  Ltd.

1. Introduction

[18F]Fluorodeoxyglucose positron emission
tomography–computed tomography (FDG PET–CT) is regarded
as the imaging modality of choice for the evaluation, staging
and assessment of response in many malignancies including the
lymphomas (Hong et al., 2007; Freudenberg et al., 2004; Wahl,
2009). The combination of PET and CT in one device combines
the sensitivity of PET to detect regions of abnormal function and
the anatomical localization of CT (Wahl, 2009). Sites of disease
usually display greater FDG uptake than normal structures. The
standardized uptake value (SUV) is a semi-quantitative measure
of FDG uptake or glucose metabolism and is extensively used in
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clinics to measure the degree of FDG uptake in sites of disease
(Wahl, 2009). Different malignancies have varying degrees of
FDG uptake and lymphomas are one of the most glucose-avid
cancers that are routinely staged and re-staged with PET-CT. SUV
thresholding of PET images is the main approach used to detect
sites of abnormal FDG uptake before and after treatment (Yu et al.,
2009; Vauclin et al., 2009). Regions with an SUV value higher than
a specified limit (called the ‘threshold value’) are identified as
regions of interest (ROIs) e.g., tumors (Hong et al., 2007; Wahl,
2009; Vauclin et al., 2009; Hirata et al., 2014; Nestle et al., 2005;
Paulino and Johnstone, 2004). Common SUV threshold values
include an SUV of ≥2.5 (Hellwig et al., 2007), 4.4 (Vansteenkiste
et al., 1998), 5.3 (Bryant et al., 2006), and a value above the average
SUV of a background reference region (Francis et al., 2007; Zasadny
et al., 1998), such as the liver (Wahl, 2009; Paquet et al., 2004)
and the mediastinal blood pool in the thoracic aorta (Paquet et al.,
2004; Ghosh and Kelly, 2010). However, (global) SUV thresholding
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does not take local SUV variations into account and so can include
normal tissue.

We  define sites of FDG excretion and physiologic uptake (sFEPU)
as the globally thresholded sites of expected normal FDG uptake
that are thresholded alongside tumors and other abnormal regions
in whole-body PET studies. These sFEPU predominately belong to
the excretion uptake in the kidneys and both ureters, normal phys-
iological uptake in the brain and the heart, and pooling of FDG
in the bladder. A single sFEPU is often split into many smaller
fragments, which is a byproduct of global thresholding on hetero-
geneous structures such as the kidneys, which have varying degrees
of FDG present in different locations. Global thresholding can there-
fore make the image-driven assessment of disease problematic as it
can obscure disease in adjacent structures, in particular, in the par-
avertebral regions, in the mid  and lower abdomen where involve
lymph nodes lie adjacent to the ureters. The automatic identifica-
tion and labeling of sFEPU, and their separation from sites of disease
would thus therefore improve lesion detection and computer aided
diagnosis. The automated detection and labelling of sFEPU is chal-
lenging because: (1) there are low inter-class differences, as some
sFEPU fragments may  only partially represent a class/structure. e.g.,
a kidney fragment only represents a portion of the whole kidney
which makes some image features ineffective for differentiation
(see Fig. 1b); (2) there is inconsistent localization information about
sFEPU fragments due to the random localization of abnormal sites
with the body; and (3) there is a large variation in the degree of FDG
uptake among different patients where a structure (e.g., heart) may
not have been thresholded (due to being under the threshold value)
and thus appears ‘absent’.

There have been many different approaches that attempt to
separate and label different structures on PET-CT studies: (a) abnor-
mality classification/detection, which attempts to classify/detect
one type of abnormality, e.g., liver tumors; (b) multi-structure clas-
sification where the aim is to detect or semantically label multiple
anatomical structures that excludes abnormalities; and (c) abnor-
malities and multi-structure classification, which attempts to label
different types of structures and abnormalities within the same
framework. Existing research in abnormality detection is mainly
limited to detecting only a single type of abnormality e.g., liver
tumors (Pescia et al., 2008), lung nodules (Zhang et al., 2014), lung
tumors (Ballangan et al., 2010). The underlying assumption is that
there is only single lesion type in the image. These methods typ-
ically require prior knowledge to model the abnormality and to
constrain the detection e.g., lung segmentation is usually required
for lung tumor detection and the classification accuracy will rely
on the segmentation performance (Ballangan et al., 2010). In addi-
tion, these methods are unproven for the simultaneous detection
of abnormalities on whole-body images as they depend on the seg-
mentation of anatomical structures and a priori knowledge about
specific abnormalities. The majority of multi-structure classifica-
tion approaches are optimized to localize normal structures: Zhan
et al. (2008) used an active scheduling approach to detect mul-
tiple organs, Criminisi et al. (2009) used relative spatial features
with random forest to localize different organs on CT volumes, and
Linguraru and Summers (2008) used template matching to detect
abdominal organs on CT. Methods using probabilistic atlases with
deformable registration, geometric transformation and probabilis-
tic averaging have also been used to identify multiple organs (Han
et al., 2008; Zhuang et al., 2008; Fenchel et al., 2008; Shimizu,
2006; Yao et al., 2006). The focus on normal structures, however,
means that these methods struggle in the presence of the defor-
mations introduced by disease, which affect the size and shape of
the involved structure in variable and inconsistent ways (Li et al.,
2012).

There has been limited work on the simultaneous classification
(detection and separation) of abnormalities and multiple normal

structures. In general, this work has involved in localizing indi-
vidual regions, extracting discriminative features, and then using
supervised classification algorithms to label each region. Lartizien
et al. (2014) used a combination of texture features, filter based
feature selection, and support vector machines (SVMs) to separate
several types of lymphoma and non-lymphoma regions in PET-CT
images. However, input ROIs required manual delineation, which is
highly operator dependent, time-consuming, and is poorly repro-
ducible across different user groups. Wu  et al. (2012) used region
growing to detect potential abnormalities and then used SVMs to
classify these regions into different classes. Similarly, Song et al.
(2012) used a multi-stage classification framework that combined
SVM with conditional random field (CRF) for detecting the lungs,
mediastinum, lung tumors and lymph nodes. In a later work, Song
et al. (2013) used a weighted sparse representation with image
patches for classification. However, all these works were designed
to work with specific anatomical regions in PET-CT images such
as the thorax (Song et al., 2012; Song et al., 2013) and head and
neck area (Wu et al., 2012). Furthermore, these methods relied
on contextual features to separate different structures and were
dependent on the accurate localization of the normal structures.
Such methods are not suitable for whole-body PET-CT lymphoma
studies where there can be innumerable sites of disease seen across
the region examined.

In previous work, we conducted preliminary studies to address
the simultaneous classification of abnormalities and multiple nor-
mal  structures on whole-body PET-CT studies (Bi et al., 2014a,b; Bi
et al., 2015a). Our approach was to detect all the potential abnor-
malities e.g., thresholding and then iteratively filtering out normal
structures rather than model lesions that can have inconsistent
shapes and localization information. Abnormalities can be detected
in a reverse manner through the filtering (removal) of normal struc-
tures. In the initial work, we  used PET-CT features (Bi et al., 2014a)
to classify and separate the sFEPU fragments, where we  selectively
used PET, CT or PET-CT features based on the image characteristics
of different structures. We  extended this work to cluster the thresh-
olded fragments thereby increasing the discriminative power of
the features derived from clustered fragments when compared to
using individual fragments (Bi et al., 2014b). We  also investigated
the optimal feature representation to individual structures using a
structure based feature selection strategy together with a SVM for
classification (Bi et al., 2015a). These previous approaches relied
on using individual thresholded fragments which lack discrimina-
tive power especially for small fragments (as shown in Fig. 1b) (Bi
et al., 2014a; Bi et al., 2015a). The clustering based method assem-
bled the fragments of the same structure (see Fig. 1c) but was not
able to describe the structures since the cluster only partially rep-
resented the actual structure and left large semantic differences
between the clusters and the actual structure (see Fig. 1a, c and e)

In this study, we  propose a novel algorithm that uses a multi-
scale superpixel-based encoding method (MSE) and a class-driven
feature selection and classification model (CFSC) for sFEPU clas-
sification in whole-body PET-CT lymphoma studies. We  derived
class-driven features from multi-scale superpixel regions encoded
with domain transferred deep convolutional neural networks
(CNN) features for classification. Our algorithm differs from other
methods as follows:

(1) Our MSE  approach enables the grouping of the sFEPU fragments
which then permits the extraction of optimal features on multi-
scale superpixels, thereby increasing the discriminative power
compared to using individual fragments. When compared with
traditional methods reliant on sliding windows, our approach
minimizes the risk of merging unrelated pixels by aggregating
pixels conservatively into superpixels to capture local redun-
dancy in the data. The use of multi-scale superpixels allows
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