Accepted Manuscript

Title: Edge-preserving Denoising for Intra-operative Cone Beam CT in Endovascular Aneurysm Repair

Authors: Yi Liu, Miguel Castro, Mathieu Lederlin, Huazhong Shu, Adrien Kaladji, Pascal Haigron

PII: S0895-6111(17)30003-4

DOI: http://dx.doi.org/doi:10.1016/j.compmedimag.2017.01.004

Reference: CMIG 1490

To appear in: Computerized Medical Imaging and Graphics

Received date: 26-5-2016 Revised date: 18-11-2016 Accepted date: 26-1-2017

Please cite this article as: Liu Yi, Castro Miguel, Lederlin Mathieu, Shu Huazhong, Kaladji Adrien, Haigron Pascal. Edge-preserving Denoising for Intra-operative Cone Beam CT in Endovascular Aneurysm Repair. *Computerized Medical Imaging and Graphics* http://dx.doi.org/10.1016/j.compmedimag.2017.01.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Edge-preserving Denoising for Intra-operative Cone Beam CT in Endovascular Aneurysm Repair

Yi Liu^{a,b,1}, Miguel Castro^{a,b}, Mathieu Lederlin^{a,b,c}, Huazhong Shu^{e,f}, Adrien Kaladji^{a,b,d}, Pascal Haigron^{a,b,e}

- ^a INSERM, U1099, Rennes, F-35000, France
- ^b Université de Rennes 1, LTSI, Rennes, F-35000, France
- ^c CHU Rennes, Department of Radiology, F-35000, France
- ^d CHU Rennes, Department of Cardiothoracic and Vascular Surgery, F-35000, France
- ^e Ctr Rech Informat Med Sino Français, CRIBs, Rennes, F-35000, França
- ^f Southeast University, Laboratory of Image Science and Technology, Key Laboratory of Computer Network and Information Integration of Ministry of Education, Nanjing 210096, Jiangsu, Peoples R China

Corresponding author: Pascal Haigron

Email: Pascal.Haigron@univ-rennes1.fr

¹Present address: National Key laboratory for Electronic Measurement Technology, North University of China, 030051, Tai Yuan, Peoples R China

Highlights

- 1, We propose a new edge-preserving penalty based PWLS (penalized weighted least-squares) algorithm for intraoperative CBCT with low dose radiation from the EVAR (Endovascular aneurysm repair) operation.
- 2, The proposed edge-preserving penalty absorbs the concept of bilateral filter and can not only suppress noise and artifacts in CBCT images, but also improve the contrast for low-contrast regions.
- 3, Experimental comparisons demonstrate that the proposed edge-preserving penalty outperforms the isotropic, anisotropic, TV and Huber penalties.

Abstract: C-arm cone-beam computed tomography (CBCT) acquisition during endovascular aneurysm repair (EVAR) is an emergent technology with more and more applications. It offers real time imaging with a stationary patient and provides 3-D information to achieve guidance of intervention. However, there is growing concern on the overall radiation doses delivered to patients all along the endovascular management due to pre-, intra-, and post-operative X-ray imaging. Manufactures may have their low dose protocols to realize reduction of radiation dose, but CBCT with a low dose protocol has too many artifacts, particularly streak artifacts, and decreased contrast-to-noise ratio (CNR). To reduce noise and artifacts, a penalized weighted least-squares (PWLS) algorithm with an edge-preserving penalty is proposed. The proposed method is evaluated by quantitative parameters including a defined signal-to-noise ratio (SNR), CNR, and modulation transfer function (MTF) on clinical CBCT. Comparisons with PWLS algorithms with isotropic, TV, Huber, anisotropic penalties demonstrate that the proposed edge-preserving penalty performs well not only on edge preservation, but also on streak artifacts suppression, which may be crucial for observing guidewire and stentgraft in EVAR.

Keywords: Endovascular aneurysm repair, intra-operative CBCT, image denoising, penalized weighted least-squares, edge-preserving penalty.

Download English Version:

https://daneshyari.com/en/article/4964697

Download Persian Version:

https://daneshyari.com/article/4964697

<u>Daneshyari.com</u>