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A B S T R A C T

This paper evaluates the performance of first generation entropy metrics, featured by the well known and widely
used Approximate Entropy (ApEn) and Sample Entropy (SampEn) metrics, and what can be considered an evo-
lution from these, Fuzzy Entropy (FuzzyEn), in the Electroencephalogram (EEG) signal classification context. The
study uses the commonest artifacts found in real EEGs, such as white noise, and muscular, cardiac, and ocular
artifacts. Using two different sets of publicly available EEG records, and a realistic range of amplitudes for
interfering artifacts, this work optimises and assesses the robustness of these metrics against artifacts in class
segmentation terms probability. The results show that the qualitative behaviour of the two datasets is similar,
with SampEn and FuzzyEn performing the best, and the noise and muscular artifacts are the most confounding
factors. On the contrary, there is a wide variability as regards initialization parameters. The poor performance
achieved by ApEn suggests that this metric should not be used in these contexts.

1. Introduction

Electroencephalography is a very important medical monitoring
technique based on recording and analysing the brain's electrical activity.
These recordings are termed electroencephalograms (EEGs), and are
usually obtained non invasive by placing electrodes on the surface of
scalps. The resulting time series can then be used to study the electrical
activity of different brain regions and their correlation with clinical
variables [1]. This analysis, performed by skilled operators using classical
signal processing algorithms, was successfully used to assess a multitude
of brain disorders, damage or processes.

For example, the authors in Ref. [2] propose a method based on the
EEG power spectrum to estimate users' level of alertness while they
performed critical tasks. Similarly [3], report a method to classify states
of fatigue and alertness while driving. Another field of extensive research
is the assessment of sleep or anesthesia depth. In Rodriguez et al. [4], the
authors describe an unsupervised sleep stages classification method
based on pattern recognition techniques and a feature optimisation al-
gorithm. EEG has also been used to evaluate the brain function after a
stroke. The study [5] proposes a dense–array EEG to capture stroke ef-
fects, with a high correlation with the NIH stroke scale by partial least
squares modelling. EEG and different types of dementia form another

very active field of research. In Ref. [6], the authors carried out a met-
a–analysis based on 4157 papers to assess the correlation between
abnormal EEGs and early–onset dementia (EOD). A clear relationship
was found and demonstrated the capability of EEG to become a reliable
tool for EOD diagnosis and prognosis. EEG analysis and processing can
also contribute significantly to diagnosing and managing epilepsy [7]
with a number of specific applications, such as seizure type determina-
tion or identification of epileptogenic regions, among many more.

However, not all the information provided by EEGs can be directly
extracted because some information may be buried far down in the dy-
namics of the time series itself. In order to place this information within
reach of the understanding of physicians, it is necessary to implement
advanced mathematical methods and algorithms that extract additional
subclinical information efficiently and expeditiously [8]. In line with
this, one of the most successful groups of tools is the time series entropy
estimation methods.

A diverse varied collection of these methods has been proposed in the
last few decades, including Approximate Entropy, Sample Entropy, Fuzzy
Entropy, Lempel–Ziv complexity, Permutation Entropy, Distribution
Entropy, Renyi Entropy, Detrended Fluctuation Analysis, and some
others, with a broad range of capabilities and applications in mainly
economy and medicine. Specifically, in the field of EEG processing, two
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of the most widely used and successful entropy estimators are Approxi-
mate Entropy (ApEn) [9] and Sample Entropy (SampEn) [10], with
hundreds of studies in the scientific literature.

ApEn quantifies the similarity probability of patterns of length m and
mþ 1. Unlike other previous non linear methods, ApEn has demonstrated
its robustness against noise and its capability to detect complexity
changes using finite size datasets, and has provided at least 1000 data
values whenever available [9]. By using similarity threshold r, defined as
a fraction of the standard deviation of the input data, ApEn is also scale-
independent. ApEn has been used to find EEG differences in schizo-
phrenia patients [11], with lower entropy values obtained for these pa-
tients, or in comatose patients [12]. A significant number of studies has
assessed anaesthesia depth where ApEn was the chosen tool, e.g., the
work described in Ref. [13]. In that study, the ApEn metrics was able to
track EEG changes in different anesthesia stages. Other research works
have focused on measuring the effects of specific treatments or therapies
on a range of neurological conditions through quantifiable changes in
EEG. For example, the authors in Ref. [14] investigated the effect of
current stimulation on aphasic patients. EEG changes due to aging or
sleep have also been assessed using ApEn, as in Ref. [15], where ApEn
was able to distinguish consciousness levels, and to find differences be-
tween age groups.

SampEn is a similar statistic. It also measures the probability of sub-
sequences being close at two lengths m and mþ 1 within tolerance r.
However, SampEn does not include self–comparisons and exhibits
greater consistency than ApEn [16]. The algorithm to compute SampEn is
also faster than that of ApEn, but its execution time is still OðN2Þ, with N
being the length of the time series [17]. SampEn has not yet been used as
extensively as ApEn as this was proposed later, but it is quickly catching
up given its better performance. The scope of application is very similar
to that of ApEn. So, there are works that have studied EEG differences
between control subjects and individuals with traumatic brain injury
[18]. Sleep stages have also been classified using SampEn, as in Refs.
[19,20]. Alzheimer screening using EEG and SampEn is another prom-
ising area of research with already significant results [21].

ApEn and SampEn are very successful data entropy estimators, but
they also have their weaknesses. As stated above, ApEn is biased since it
includes self–matches in the count, and SampEn requires a relatively
large r to find similar subsequences and to avoid the logð0Þ problem
(Table 1). They are also very sensitive to input parameters m, r, and N.
More recently, an evolution of these metrics, Fuzzy entropy (FuzzyEn),
has been proposed to mitigate these problems [22]. FuzzyEn is based on a
continuous function to compute the dissimilarity between two zer-
o–mean subsequences and, consequently, it is more stable in noise and
parameter initialisation terms. This metrics is still scarcely used in EEG
studies, but it is expected to replace ApEn and SampEn because of its

excellent stability, mainly when applied to noisy or short records. At
present, very few studies have already demonstrated its capability to
detect epileptic seizures [23], EEG abnormalities in Alzheimer's disease
[24], or in recognizing wake or sleep stages [25,26].

ApEn and SampEn have played, or are playing, a very important role
in unveiling hidden information in EEGs, and will still be used for some
time unless a more efficient metrics, such as FuzzyEn, completely re-
places these older methods. To distinguish between these two genera-
tions of metrics, those initially proposed, even decades ago, and those
proposed less than 5 years ago as an evolution or improvement of the
initial ones, we coined the terms first- and second-generation metrics,
which will be used throughout this paper.

Signal classification efficiency is often assessed in relation to more
robustness against difficult processing conditions: class separability,
initialisation dependence, data size or noise. This paper focuses specif-
ically on the effect on entropy metrics of EEG signals noise. Biomedical
records are often corrupted with artifacts and noise, and EEGs are no
exception. In general, biomedical record interferences can be of a phys-
iological (EEGs are corrupted with data from other biosignals) or tech-
nical (EEGs are corrupted with noise generated by acquisition or other
nearby systems) origin, with a myriad of methods to remove, or at least,
reduce these artifacts proposed in the scientific literature [27–30].
However, this is not always possible: signal and artifacts overlap in time
and/or frequency domains (they cannot be removed without degrading
the underlying valid signal), there is a high computational cost or
complexity of the required algorithms, and the parameter optimization
needs of filtering or cancelling methods cannot be addressed due to lack
of time or resources.

As a result, a certain level of interference should be expected in any
EEG signal, and the methods applied must therefore be robust against it.
The present study addresses this issue by assessing of the performance of
the above cited methods, ApEn, SampEn, and FuzzyEn, in the noisy EEG
signal classification context. Specifically, we analyse the influence of the
commonest physiological artifacts in EEG records: ocular artifacts [31],
cardiac artifacts [32] and muscular artifacts [33]. The study also includes
technical artifacts, such as noise and spikes [34]. The objective of the
study is to improve the understanding of the metrics' behaviour under
real conditions, and to provide practical advice about optimal
performance.

The methodology employed is based on quantitative research. The
analysis involves the collection of labelled EEG data, considered as the
ground truth, since they do not contain artifacts (intra-cranial visually
inspected EEGs), and apply a correlational research to find differences
among the three entropy metrics studied (ApEn, SampEn, and FuzzyEn),
based on a statistical treatment. The ultimate goal is to support or refute
the robustness against artifacts hypothesis of each one of the metrics.

Table 1
Mathematical definition of ApEn, SampEn, and FuzzyEn (μðd; rÞ: Fuzzy membership function).

ApEnðm; r; NÞ SampEnðm; r; NÞ FuzzyEnðm; r; NÞ
1) Create a set of

subsequences of length m
xi ¼ fxi ; xiþ1; …; xiþm�1gi ¼ 1; …; N� mþ 1 xi ¼ fxi; xiþ1; …; xiþm�1gi ¼ 1; …; N� mþ 1 yi ¼ fxi; xiþ1; …; xiþm�1gyi ¼ meanðyiÞ

xi ¼ fxi� yi; xiþ1� yi ; …; xiþm�1� yig
i ¼ 1; …; N� mþ 1

2) Dissimilarity computation dij ¼ maxð��xiþk� xjþk
��Þ; 0 � k � m� 1 dij ¼ maxð��xiþk� xjþk

��Þ; 0 � k � m� 1; j≠i dij ¼ maxð��xiþk� xjþk
��Þ;

Dij ¼ μðdij ; rÞ; 0 � k � m� 1; j≠i
3) Count matches BiðrÞ no. of j so that d½XmðiÞ; XmðjÞ� � r

AiðrÞ no. of j so that
d½Xmþ1ðiÞ; Xmþ1ðjÞ� � rð1 � j � N� mþ 1Þ

BiðrÞ no. of j so that d½XmðiÞ; XmðjÞ� � rAiðrÞ no. of j
so that d½Xmþ1ðiÞ; Xmþ1ðjÞ� � rð1 � j � N� m; j≠iÞ ϕm

i ðrÞ ¼ 1
N� m� 1

PN�m

j¼1;j≠i
Dm
ij

4) Statistics Bm
i ðrÞ ¼ 1

N� mþ 1BiðrÞAm
i ðrÞ ¼ 1

N� mAiðrÞ

ϕmðrÞ ¼ 1
N� mþ 1

PN�mþ1

i¼1
logBm

i ðrÞ

ϕmþ1ðrÞ ¼ 1
N� m

PN�m

i¼1
logAm

i ðrÞ

Bm
i ðrÞ ¼ 1

N� m� 1BiðrÞBmðrÞ ¼ 1
N� m

P
i¼1

N�m
Bm
i ðrÞ

Am
i ðrÞ ¼ 1

N� m� 1AiðrÞAmðrÞ ¼ 1
N� m

P
i¼1

N�m
Am
i ðrÞ

φmðrÞ ¼ 1
N� m

PN�m

i¼1
ϕm
i ðrÞ

φmþ1ðrÞ ¼ 1
N� m

PN�m

i¼1
ϕmþ1
i ðrÞ

5) Result ApEnðm; rÞ ¼ lim
N→∞

½ϕmðrÞ� ϕmþ1ðrÞ�
ApEnðm; r; NÞ ¼ ½ϕmðrÞ� ϕmþ1ðrÞ�

SampEnðm; rÞ ¼ lim
N→∞

�
� log

�
AmðrÞ
BmðrÞ

��

SampEnðm; r; NÞ ¼ � log
�
AmðrÞ
BmðrÞ

�
FuzzyEnðm; rÞ ¼ lim

N→∞
½logφmðrÞ� logφmþ1ðrÞ�

FuzzyEnðm; r; NÞ ¼ ½logφmðrÞ� logφmþ1ðrÞ�

D. Cuesta–Frau et al. Computers in Biology and Medicine 87 (2017) 141–151

142



Download English Version:

https://daneshyari.com/en/article/4964806

Download Persian Version:

https://daneshyari.com/article/4964806

Daneshyari.com

https://daneshyari.com/en/article/4964806
https://daneshyari.com/article/4964806
https://daneshyari.com

