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A B S T R A C T

Background: Repolarization gradients contribute to arrhythmogenicity. In reaction–diffusion models of cardiac
tissue, heterogeneities in action potential duration (APD) can be created by locally modifying an intrinsic
membrane kinetics parameter. Electrotonic coupling, however, acts as a confounding factor that modulates APD
dispersion.

Method: We developed an algorithm based on a quasi-Newton method that iteratively adjusts the spatial
distribution of a membrane parameter to reproduce a pre-defined target APD map in a coupled tissue. The
method assumes that the relation between the adjustable parameter and APD is bijective in an isolated cell.
Each iteration of the algorithm involved simulating the cardiac reaction–diffusion system with the updated
parameter profile for one beat and extracting the APD map. The algorithm was extended to simultaneous
estimation of two parameter profiles based on two APD maps at different repolarization thresholds.

Results: The method was validated in 1D, 2D and 3D atrial tissues using synthetic target APD maps with
controllable total variation and maximum APD gradient. The adjustable parameter was local acetylcholine
concentration. The iterations converged provided that APD gradients were not too steep. Convergence was
found to be faster 2–5 iterations) when the maximal gradient was less steep, when APD range was smaller and
when tissue conductivity was reduced.

Conclusion: This algorithm provides a tool to automatically generate arrhythmogenic substrates with
controllable repolarization gradients and possibly incorporate experimental APD maps into computer models.

1. Introduction

The presence of strong repolarization gradients in a cardiac tissue is
an arrhythmogenic factor that promotes wave breaks and reentry [1–
4]. The occurrence of functional block has been observed in the
presence of action potential duration (APD) gradients above a critical
value of the order of 2–12.5 ms/mm [5–8]. Dispersion of action
potential duration (APD) may result from intrinsic spatial variations
in ion channel density (notably aggravated by the remodeling induced
by successive episodes of arrhythmia), from beat-to-beat variability in
repolarization eventually exhibiting non-linear dynamics and chaos [9],
or from the interplay between geometry, conduction properties, wave-
let dynamics [10,11], and mechano-electric feedback [12,13].

Electrotonic currents flowing through gap junctions tend to reduce
the differences in APD between neighboring cells [14–16]. As a result,
APD measurements in an intact tissue may not exactly reflect the
intrinsic local properties of the cells, but rather an average over a
surrounding region whose size and shape depends on conduction

properties [17,18]. Determination of true intrinsic membrane proper-
ties may be obtained through biopsies followed by patch clamp
experiments. This approach is however limited in terms of spatial
resolution, creates damage to the tissue and possibly changes the
dynamics and densities of ionic currents, resulting in an APD that may
differ from the APD that would have been measured in situ. Techniques
such as electrical stimulation, monophasic action potentials and optical
mapping preserve the integrity of the tissue (to some extent), but the
resulting APD maps are affected by electrotonicity. Thus, the relation-
ship between measured APD and intrinsic APD is relevant to the non-
destructive extraction of cellular intrinsic properties.

In computer models of cardiac arrhythmia, the incorporation of
APD dispersion requires designing a spatial profile of intrinsic proper-
ties of cardiac cells. Typically, a membrane kinetics parameter is
chosen as target and its spatial distribution is used as an input to the
model [19,20]. The question arises whether that parameter distribution
can be determined from an APD map in the coupled tissue. The
existence and uniqueness of the solution has been investigated in a
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simplified model with exponentially-shaped action potentials [21].
Hurtado et al. calibrated a ventricular model to reproduce the relation
between activation time and a refractoriness parameter [22]. Defauw
et al. proposed a Gaussian Green's function model and a deconvolution
approach to estimate the intrinsic APD map [17]. Inspired by their
approach, we hypothesized that knowledge about which specific
membrane kinetics parameter causes APD variations would enable
the development of more accurate methods.

In this paper, we propose an algorithm for iteratively computing the
parameter distribution that reproduces a target APD map, based on an
idea initially sketched in [21] and tested in [23]. The implementation is
described and extensively validated in atrial tissue models with
increasing complexity, and its computational performance and accu-
racy are evaluated.

2. Methods

2.1. Problem statement

In the framework of a monodomain model of cardiac tissue, let us
consider that the membrane model depends on a local parameter k that
lies within a physiological range k k[ , ]min max . This parameter could be an
ion channel conductance, an ionic concentration, or a normalized
parameter describing the transition between normal and diseased
tissue, but is assumed not to affect intercellular coupling (gap junction
conductances). After spatial discretization, tissue configuration is
described by a vector k whose size is the number of nodes in the mesh.

When the spatial distribution of k is non-uniform, the simulated
APD map is also non-uniform. The forward problem then consists in
computing the APD map (a) as a function of k

Ga a k= ( ; ).forw (1)

Because of electrotonicity, APD distribution depends not only on k but
also on the intercellular coupling matrix G. Practically, the function
aforw was evaluated by running a monodomain simulation with the
distribution of parameters set to k and by measuring the APD map.
Specific simulation methods are described in Section 2.5.

Assuming that the coupling is known, the inverse problem consists
in recovering the parameter distribution k that would reproduce a
given APD map atarget

Gk a a= ( ; )forw
−1

target (2)

provided that the solution exists and is unique for a given stimulation
protocol, i.e. aforw is invertible. Uniqueness of the solution has been
proved in a simple analytical model [21] and is also guaranteed if the
APD map in the coupled system can be written as the convolution of
the intrinsic APD map with a spatial (e.g. Gaussian) filter [17].

2.2. Parameter identification

The inverse problem is equivalent to solving the equation
a k a( ) − = 0forw target . Our approach relies on the fact that the problem
is easily solved when cells are uncoupled (G=0). A first approximation
k(0) is obtained by neglecting electrotonicity:

k a a= ( ; 0).(0)
forw
−1

target (3)

Then, at iteration n, the parameter profile is updated using the quasi-
Newton formula

Gk k Da k a k a= − ( ( ; 0)) ·( ( ; ) − ),n n n n( +1) ( )
forw

( ) −1
forw

( )
target (4)

where the Jacobian GDa k( ; )n
forw

( ) has been approximated by the
(diagonal) Jacobian in the uncoupled tissue Da k( ; 0)n

forw
( ) to avoid

expensive computations. The Jacobian in the coupled tissue is indeed a
fully-populated matrix. The diagonal approximation, which is reminis-
cent of mass lumping in finite element methods, guarantees that the

inverse exists. Moreover, if the simulated local APD is shorter than the
target APD, the local parameter k will be updated to increase the
intrinsic APD, therefore increasing the updated simulated APD pro-
vided that this effect is not compensated by the neighboring cells. This
overcompensation will not occur as long as the APD error is a smooth
function of space. The iteration process stops when the error

a k a∥ ( ) − ∥n
forw

( )
target falls below a tolerance, typically 1 ms.

2.3. Computational issues

As a preprocessing step, the relation a α k= ( ) between the para-
meter k and the APD (a) was studied in an isolated cell. The function α
was evaluated (using simulations) at n=8 equally-spaced points in the
interval k k[ , ]min max . The number of points was then iteratively increased
until the maximal error between spline interpolation based on the
previous iteration and the new computed data points fell below a
threshold, typically 0.5 ms. This provided a piece-wise polynomial
interpolation for the function α k( ). The monotonicity of α k( ) was
checked using the coefficient of the polynomials. Spline interpolation
on the same data points (reflected across the diagonal) was used to
compute the inverse function k α a= ( )−1 . The derivative α k′( ) was
obtained by analytically differentiating the piece-wise polynomial in
each of its segments. To avoid out-of-bound errors, when the argument
of the function is out of the domain or the range of α, the value at the
bound is returned.

With these notations, we have:

αa a a( ; 0) = ( )forw
−1

target
−1

target (5)

αDa k k( ( ; 0)) = diag( ′( )) ,forw
−1 −1 (6)

where the functions α−1 and α′ are applied element-wise and ‘diag’
creates a diagonal matrix from a diagonal vector.

The algorithm was implemented in Matlab on a Linux machine. At
each iteration, the Matlab function writes a parameter file, calls an
external program to run the simulation, reads the output and continues
the execution in Matlab.

2.4. Extension to two parameters

If the membrane model depends on two parameters k and m, two
measures of repolarization a α k m= ( , ) and b β k m= ( , ) are needed for
parameter identification. They may represent APD at different repolar-
ization thresholds or at different heart rates. Assuming that the system
a α k m= ( , ) and b β k m= ( , ) has a unique solution in a domain Ω, the
inverse solution may be denoted by k α a b= ( , )−1 and m β a b= ( , )−1 .

In a coupled tissue where the two measures a k m( , )forw and
b k m( , )forw can be simulated, a first estimate of the parameter vectors
k and m that solve the inverse problem a a k m= ( , )target forw and
b b k m= ( , )target forw is obtained by

αk a b= ( , )(0) −1
target target (7)

βm a b= ( , ).(0) −1
target target (8)

Then, at iteration n the update formula reads
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where the Jacobian is approximated by
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diag((∂ )( , )) diag((∂ )( , ))
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k m
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where the functions α∂k , etc. are applied element-wise. The inverse of J
is easily computed thanks to its 2-by-2 diagonal block structure:
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