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A B S T R A C T

A growing number of individuals who are considered at high risk of cancer are now routinely undergoing
population screening. However, noted harms such as radiation exposure, overdiagnosis, and overtreatment
underscore the need for better temporal models that predict who should be screened and at what frequency. The
mean sojourn time (MST), an average duration period when a tumor can be detected by imaging but with no
observable clinical symptoms, is a critical variable for formulating screening policy. Estimation of MST has been
long studied using continuous Markov model (CMM) with Maximum likelihood estimation (MLE). However, a
lot of traditional methods assume no observation error of the imaging data, which is unlikely and can bias the
estimation of the MST. In addition, the MLE may not be stably estimated when data is sparse. Addressing these
shortcomings, we present a probabilistic modeling approach for periodic cancer screening data. We first model
the cancer state transition using a three state CMM model, while simultaneously considering observation error.
We then jointly estimate the MST and observation error within a Bayesian framework. We also consider the
inclusion of covariates to estimate individualized rates of disease progression. Our approach is demonstrated on
participants who underwent chest x-ray screening in the National Lung Screening Trial (NLST) and validated
using posterior predictive p-values and Pearson's chi-square test. Our model demonstrates more accurate and
sensible estimates of MST in comparison to MLE.

1. Introduction

Lung cancer, breast cancer, diabetes and coronary heart disease are
today's leading causes of death [1]. A better understanding of these
diseases' progression and dynamics, such as the expected time to reach
a certain disease state, may lead to more appropriate prevention,
management and treatment, as well as early detection [2]. Periodic
screening using imaging is one of the most common ways to detect
early stage disease, especially for cancer. Longitudinal data collected as
a result of screening [3] provide an opportunity to discover better
approaches for characterizing natural disease progression and generate
predictions for individualized screening or diagnostic policies [4].
Traditionally, a “one size fits all” approach has been used for programs
such as mammography screening. However, patients at lower risk of
cancer should likely have longer screening intervals or not be screened
at all.

The mean sojourn time (MST) measures how fast a disease
progresses from a preclinical state (imaging detectable but without
observable symptoms) to a clinical state (with observable symptoms).

MST has been widely used [5] to model disease progression and in the
context of population screening, calculate the optimal interval between
screens and estimate the extent of overdiagnosis. The overarching
objective of our work is to determine how the estimation of MST can be
used to inform individualized screening strategies [6]. Four infor-
matics-related challenges exist in leveraging retrospective screening
data. First, observations for disease states made in clinical practice are
often subject to interpretation error such as when radiologists incor-
rectly miss a cancerous nodule due to reasons such as noise and
artifacts in an image. Failure to model this observation error will bias
the MST estimation [7]. Second, missing or partial observations are
common in clinical practice. For example, some patients may miss a
scheduled screening exam or undergo care at another facility where
data is not shared. Third, the interval between screening exams is
frequently irregular (e.g., patients do not always come back exactly
within one year). Thus, the discretization of continuous time informa-
tion results in the loss of valuable information [8]. Fourth, the sample
size of certain observed disease states may be very small (sparse), thus
making the estimation difficult. For instance, patients will usually
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undergo an intervention if early state cancer is detected, thereby
removing them from further observations. As a result, transitions to
later states have fewer individuals with which probabilities can be
estimated.

To overcome the aforementioned challenges, we use a continuous-
time Markov model to represent disease transitions between states.
Maintaining continuous time information permits estimation of un-
observed states and maintains the interval between screens that is
unique for each individual. We then utilize a Bayesian approach to
jointly estimate MST, interpretation error, and disease incidence rates
using the CMM model and to derive the observed transition probability
between states for subsequent rounds of screening. Finally, we
demonstrate how the MST can be estimated for different subgroups
that are stratified by covariates such as demographics and patient
history. We evaluate our model using data from the National Lung
Screening Trial (NLST) [9]. In particular, we model the natural history
of lung cancer in the chest x-ray (CXR) arm, whose participants
underwent three rounds of lung cancer screening.

In Section 2, we introduce prior work related to estimating MST
using Bayesian approaches and CMMs. In Section 3, we describe the
NLST dataset and the corresponding data pre-processing. The theore-
tical formulations of our CMM-based Bayesian approach along with
specific implementation details of the framework are presented in
Sections 3.2–3.4. In Section 4, we summarize the results, comparing
the performance of our framework with that of maximum likelihood
estimation (MLE) for a three-state Markov model. Finally, in Section 5,
we discuss the advantages and limitations of our models and future
directions.

2. Background

Numerous techniques for modeling multi-state disease progression,
especially for MST, have been proposed. Aalen et al. modeled HIV/
AIDS progression using a discrete-time Markov model [10]; Chen et al.
presented a three-state discrete progressive model for breast cancer
[11]. Multi-state continuous-time Markov models can be adapted to
solve the loss of continuous-time information [8] due to interval
censoring. In particular, they have been used to model hepatocellular
carcinoma [12], liver cirrhosis [13], periodontal disease [2] and
diabetic retinopathy [14]. Duffy et al. applied a three-state continuous
Markov model to data from a breast cancer randomized controlled trial
to estimate the MST and the sensitivity of the screening process [8].
This method assumes perfect sensitivity in estimating the transition
times between states and then subsequently estimates the sensitivity
using fixed transition times. Chen et al. extended and applied the
continuous-time Markov model in breast screening to jointly estimate
mean sojourn time, screening sensitivity, and the positive predictive
value [15]. Nevertheless, information from the control group (e.g.,
individuals who received usual care) was needed to properly estimate
the desired parameters. Bayesian approaches have been increasingly
applied [16–20] to infer MST and screening sensitivity. Our model is
capable of modeling the situation where no control group information
is available. This is especially relevant in clinical settings where it is
unethical to deny treatment. A Bayesian framework applied to breast
cancer screening data was used in [16] to obtain age-dependent
sensitivity and estimates of transition probabilities. Chien et al. applied
a Bayesian approach to validate the effectiveness of computed tomo-
graphy (CT) for mortality reduction in lung cancer and to estimate the
MST [17]. In 2010, Wu et al. used data from the Mayo Lung Project
(MLP) to estimate lung cancer screening sensitivity, age-dependent
transition probability between states, and the distribution of sojourn
time using a Bayesian approach [18]. Bayesian methods have advan-
tages over classical techniques such as enabling small sample inference,
providing appropriate measures of uncertainties, allowing inference on
non-linear functions of parameters, and constructing predictive dis-
tributions to allow for additional inferences of interest [16]. More

recently, Jiang et al. [21] used the Day and Walter model [22] to
estimate the MST and the false negative rate from the Ontario breast
cancer screening program in Canada. Taghipour et al. [23] modeled the
natural history of breast cancer with a 4-state hidden Markov model
and analyzed the effects of covariates and over different subpopula-
tions. Jia et al. [24] used a 5-state Markov model to detect the
worsening of patient symptoms in order to prioritize by symptom
severity. Ma et al. [25] used a Bayesian approach on a 5-state
continuous time Markov model to investigate a transtheoretical model.
The advent of lung cancer and in particular lung screening trials also
stimulated the development of a number of risk models to predict lung
cancer incidence from epidemiological and clinical data. Bach et al.
[26] developed and combined two logistic regression models that
predict the 10-year cumulative probability of dying from lung cancer
and dying without lung cancer. Cronin et al. [27] validated this model
with the placebo Arm of the Alpha-Tocopherol Beta-Carotene Cancer
Prevention (ATBC) study. The model underestimated the observed
lung cancer risk and the observed non-lung cancer risk individuals that
smoked less than 20 cigarettes per day. A cox proportional hazards
regression was developed from the COSMOS trial from epidemiological
and clinical data [28]. Model's performance was poor on early cancers
but it could identify lower risk individuals and prevent overdiagnosis.
Using the PLCO dataset Tammemagi et al. [29] developed a logistic
regression model that predicts the six year probability of cancer from a
wider range, of incrementally validated using AUC, epidemiological
and clinical factors. Petousis et al. [30] developed discrete time
dynamic Bayesian networks (DBNs) that predict lung cancer incidence
at the different screening points of the NLST trial. The models achieved
results comparable to expert's decisions.

In this paper, we extend previous probabilistic models and demon-
strate how our model yields a more accurate picture of lung cancer
progression. The contributions of this paper are:

1. We provide an approach that serves as the basis for generating
individualized screening policies based on estimations of MST for a
specific group of individuals stratified by their covariates.

2. We describe how a CMM model parameterized using a Bayesian
approach can be applied to accurately model data collected from
three rounds of screening.

3. We explore the effect of age and gender on MST in the lung cancer
screening population.

Results are validated using Pearson's chi-squared test and posterior
predictive p-value to measure the model's fit to the data.

3. Materials and methods

3.1. Overview

As with prior work, we model the natural progression of lung cancer
as transitioning through three states (see Fig. 1): a disease-free state
(State 1), a preclinical state detectable via screening but asymptomatic
(State 2), and a symptomatic state (State 3) [7,8,15,17,31]. The model

Fig. 1. Model state transition diagram. State 1 is the disease-free state, State 2 is the
preclinical state and State 3 is the clinical state. Parameters λ12 and λ23 are the transition
intensities for transitioning from State 1 to State 2 and State 2 to State 3, respectively.
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