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a b s t r a c t

The paper proposes a general procedure based on Bayesian neural networks for parameter identifi-
cation of numerical models. In this context, the Bayesian neural networks are extended to multiple
outputs with a full covariance matrix to describe the correlation between the noise of output parame-
ters. This extension is especially useful for inverse problems such as a parameter identification procedure,
since it allows for the quantification of correlations between output parameters. Based on numerically
obtained forward calculations, the Bayesian neural network is trained to solve the inverse parameter
identification problem. The main advantage of the method is the ability to verify the accuracy of the
identified parameters and their correlation. The methodology further allows to detect, whether a cer-
tain set of experiments is sufficient to determine an individual model parameter. As a result, a general
scheme for the design of experiments to identify model parameters is developed and illustrated for two
examples.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Complex models are often used to accurately simulate real life
problems. This requires the identification of the model param-
eters which are sometimes not physically interpretable and,
consequently, a direct evaluation from experimental data is not
straightforward. Furthermore, if parameters are correlated or have
a similar influence, they are difficult to identify simultaneously. In
standard parameter identification procedures, a certain error mea-
sure between the numerical and experimental data set is defined,
which might be, e.g. load–displacement curves, eigenvalues or
eigenfrequencies. This error is then minimized by modification of
the material parameters in the numerical simulation using different
optimization procedures such as gradient based methods [1–5] or
genetic algorithms [6,7]. Finally, a set of parameters for the numer-
ical model is obtained that seems to best simulate the experimental
data. A general overview of different methods for parameter iden-
tification is given in [8]. Monitoring problems are another field
of application [9–13]. In this context, the parameter identification
procedure is used to identify the actual state of the structure with
respect to a reference state, which is often based on modal data.
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The idea to apply neural networks to parameter identification
problems date back to [14], where the nonlinear outputs of dynamic
systems are approximated by a black box model. Ref. [15] used
neural networks to detect damage within a structure. In [16,17],
the idea to create a metamodel based on a set of forward cal-
culations (from model parameters to the system response) that
models the inverse relation was introduced. In this context, radial
basis function neural networks were used. Ref. [18] highlighted the
problem of the bias/variance dilemma and proposed strategies to
build up an optimal architecture and perform an efficient train-
ing procedure in order to obtain good generalization properties.
A discussion on the proper choice for the generation of the train-
ing data is given in [19] and the advantages of orthogonal arrays
compared to standard procedures, like full factorial or stochastic
design of experiments, are highlighted. A model updating pro-
cedure using neural networks is also used in [20], where based
on modal parameters the system parameters are determined. In
order to increase the accuracy, a two stage procedure decoupling
the determination of the damping coefficients from the remaining
parameters is introduced. An advantage of parameter identifica-
tion based on neural networks is their ability to solve the problem
even in the presence of noisy data. Ref. [21] tries to increase the
accuracy of the parameter estimates using the parameters from
the neural network as the starting point of a subsequent gradient
iteration.

In general, most parameter identification procedures includ-
ing all the procedures based on standard neural networks have
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the severe disadvantage that no information about the accuracy
of the estimate is given and the complexity of the metamodel
has to be determined a priori. If a certain parameter has no
influence on the given test data, or two parameters influence
the response in the same way (redundant parameters for the
given experimental data), the experiment should be modified
in order to determine these parameters separately. A simple
example is a material model described by a tensile and a com-
pressive strength. Obviously, an experimental tensile test will only
allow the identification of the tensile strength, and an additional
compression test is required. For complex material models, the
interconnection between material parameter and corresponding
test required to identify that parameter is not straightforward,
and often a trial and error procedure enhanced by engineering
knowledge is performed. In this context, the proposed method-
ology offers the possibility to estimate the parameter and its
precision, which allows for a set of experiments to be designed
such that they are sufficient to estimate all parameters of the
model.

Another disadvantage of most parameter identification pro-
cedures is the required number of forward calculations, which
is especially difficult for complex and computational expensive
numerical models. Genetic algorithms and their variations need, in
general, a population of several hundred individuals with a couple
of recombination steps which finally results in more than 10,000
forward calculations. For gradient based methods, the gradient
has to be calculated either analytically, which is often difficult to
realize, or via finite differences. For general nonlinear problems,
a line search with e.g. 20 steps or a Hessian matrix is required.
As a result, gradient based algorithms also require a non negli-
gible number of simulations with the severe disadvantage that
the solution may strongly depend on the starting point of the
iteration.

The parameter identification procedure proposed in this paper
requires only few samples and additionally gives information
related to the accuracy of the parameter estimates. It is based on
a multilayer perceptron with a single hidden layer (e.g. [22,23]). A
serious problem is the generalization capacity of a network which
is related to the number of free parameters/neurons. Standard
multilayer perceptron often show overfitting phenomena, i.e. they
accurately represent training data, but new inputs, which are not
part of the training set, are poorly approximated. In order to resolve
this problem, several regularization procedures have been devel-
oped. In general, they can be subdivided into two classes. In the first
class of methods, the dimension of the parameter space is adapted
to the problem. Examples of these methods are network prun-
ing [24–26], where weights are incrementally removed from the
network, or the application of cascade-correlation network archi-
tectures [27], where, starting with a simple network, hidden units
are incrementally added. In the second class of methods, the size
of the parameters is reduced. Examples for this approach are reg-
ularization techniques such as weight decay [28] or early stopping
[29].

The Bayesian approach to neural network training was intro-
duced by Mackay [30–32]. It naturally comprises a regularization
procedure and it furthermore allows a quantification of the approx-
imation accuracy.

The paper is divided into four parts. At first, the Bayesian
approach is summarized and the extension to multiple outputs
with a covariance matrix describing the correlations between the
noise terms of different outputs is introduced. Afterwards, the
general parameter identification procedure is presented, which is
finally applied to a simple material model with an initial linear
elastic part and an exponential softening function to exemplarily
demonstrate the methodology and a more complex example of a
mesoscale model for concrete.
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Fig. 1. Definition of groups for the free parameters (weights and biases).

2. Bayesian neural networks

2.1. Architecture

Within the Bayesian framework of neural network interpola-
tion, the output of the neural network y given the input x is assumed
to be superposed by Gaussian noise:

p(t|x, w, �ˇ) = N(y(x, w), �ˇ), (1)

whereN(y(x, w), �ˇ) is a standard joint Gaussian distribution with
mean value y(x, w) and covariance ˙ˇ. It is to be noted that, in
contrast to standard Bayesian neural networks, the authors use a
full covariance matrix ˙ˇ, with a separate noise variance for each
output of the network to account for a different noise level in each
output component and their mutual correlation.

In a similar way, the prior distribution of the free parameters
(weights and biases), which corresponds to the distribution of the
free parameters without any knowledge of the training data D =
(X, t), is assumed to be

p(wj|˛j) = N(wj|0, ˛−1
j

). (2)

Theoretically, a precision parameter ˛j can be defined for all free
parameters. However, the network possesses a symmetry with
respect to the neurons (e.g. if neuron 1 and 2 in the hidden layer
with their associated weights are exchanged, the input–output
relation will remain unchanged). In order to account for this sym-
metry property, the free parameters are placed into groups with
a single precision parameter for each group, which is illustrated
in Fig. 1 for a network with a single hidden layer and two inputs
and two outputs. A group is created for each input neuron with all
connections (weights) emanating from that input (groups 1 and 2).
Furthermore, an additional group is created for the biases b(1)

i
of

the first layer (group 5). Finally, a group for each output with its
bias and all connections flowing into that output neuron (groups
3 and 4) is created. If an additional second hidden layer should be
introduced, an additional group with the weights connecting both
layers and the biases of the second layer has to be added.

2.2. Calculation of weights and biases

Assuming furthermore that the hyperparameters ˛i and the
noise covariance ˙ˇ are known, and using the assumption that
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