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A B S T R A C T

Expressions for a single time constant were developed in Maple (Waterloo Maple, Inc.) to calculate the rate at
which a drug reaches steady-state levels in the blood capillaries and neighboring tissues. The solute concentration
in the capillary region was represented by a one-dimensional convection-diffusion model. In a first case study, the
plasma and the tissue reached equilibrium very quickly. Within the dynamic regime, the amount of drugs
collected in both compartments increased with the Peclet number while the relaxation time to a steady-state value
decreased. A similar conclusion was drawn, in a second case study, when axial and radial diffusive transports were
considered important in the lungs or the skin. Also, as the mass transfer Biot number decreased, a larger amount of
medication was delivered to the tissue at a given time during the transient period. Additional applications of the
approach included the analysis of oxygen transport in peripheral nerves and the design of hollow fibre
bioreactors.

1. Introduction

The Krogh tissue cylinder has been used to describe oxygen transport
to a tissue [1,2]. According to this representation, the capillary bed is
surrounded by a homogeneous cylindrical tissue layer. The work of
Krogh serves as a basis for building systems that explain how drugs and
nutrients reach specific sites in the body [3] and for designing hollow
fibre membrane bioreactors to grow tissues [4]. These models assume
plug, parabolic or more complex flow profiles in the blood vessel [5]. It is
a common practice to write the transport equations in two dimensions
(2-D) to provide a detailed description of drug concentrations [6]. This
depiction may help increase delivery to specific organs or tissues and
provide more accurate information than what can be obtained from
traditional physiologically-based pharmacokinetic (PBPK) models. A
clearer understanding of solute transport to the brain, for example, can be
gained from this strategy.

Currently, the full benefit of the 2-D framework is not exploited
effectively because closed-form solutions are not readily available for
Krogh cylinder models. Numerical techniques, such as finite-element
methods, are routinely applied. Such approaches have notable merit
and help predict the level of drug in tissues. However, it is difficult to
develop analytical design equations and the estimation of critical phys-
icochemical parameters may be impossible. In particular, no expression

exists to determine the time it would take to reach equilibrium concen-
trations in the blood or tissues. Influences of the Peclet number on the
effective time constants ðteff Þ have not been reported. This contribution
developed expressions for teff when radial diffusion in the capillaries is
neglected. The limiting case of 1-D perfusion-limited transport is also
considered. The algorithms were written in Maple (Waterloo
Maple, Inc.).

The advantages of the proposed approach, compare to direct simu-
lation, are:

i) The closed-form expression can be shared easily with scientists who
may not be well versed in solving PDEs. They can use a spreadsheet
program, such as Microsoft Excel, to study the effects of key design
parameters on teff . The tool is attractive to experimentalists with
inadequate background in Mathematics, because it does not require
the programming of numerical techniques, such as the methods of
orthogonal collocations or the numerical method of lines, to solve a
system of PDEs.

ii) It is fairly straightforward to use a closed-form expression for teff to
solve optimal design problems. The analytical result is computation-
ally less expensive to apply than a regression algorithm involving
partial differential equations.
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2. Model

The Krogh cylinder is shown in Fig. 1. In this study, drug transport in
the capillaries is governed by a one-dimensional convection-diffu-
sion model:
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where cb is the drug concentration, u is the mean blood velocity and Db is
the diffusion coefficient in the capillary. Plug flow is assumed in this
representation [7,8]. Equation (1) represents a case in which the blood
flow rate is relatively low. Equation (2) is obtained after taking a control
volume and performing a shell balance on the solute in the capillary. In
this formulation, the solute flux at the capillary wall is proportional to the
concentration difference ðct jr¼R � KcbÞ; κ is the overall mass transfer
coefficient and is a function of the solute permeability across the capillary
and a blood side film mass transfer coefficient. The constant K is the
partition coefficient.

Two situations are considered in this work:

1. Equilibrium is reached quickly between the capillary and the tissue:

R � r � aR; ct ¼ Kcb (3)

The equilibrium is achieved instantaneously in the radial direction at
each point along the z-axis. In this case, drug transport in the tissue is
represented by Eq. (1)

2. The transport rate across the capillary is considered (i.e., Eq. (2)).
Axial and radial solute transports are important in the tissue and
governed by diffusion [3]:
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Case 1 (rapid equilibrium with the blood) is often considered in the
literature and is referred to as a perfusion-limited model. The analysis

assumes a high diffusion coefficient (Dt) in the tissue. Case 2 (slow
equilibriumwith the blood) makes it possible to evaluate the effects of Db

and u on the amount of drug that reaches the tissue. The influence of
relevant dimensionless numbers on the time it takes a tissue to become
saturated with the drug is of particular interest.

2.1. Case 1 (rapid equilibrium with the blood): model and solution

The governing equations in the two compartments are Eqs. (1) and
(3). The boundary and initial conditions are [7]

z ¼ 0; Db
∂cb
∂z

¼ uðcb � cb0Þ (5)

z ¼ L;
∂cb
∂z

¼ 0 (6)

and

t ¼ 0; cb ¼ 0 (7)

where cb0 is the concentration in the blood upstream of the tissue cyl-
inder. Eq. (6) is the Danckwerts' condition, which assumes a zero
gradient in the solute concentration at the exit section [9]. It is based on
arguments, presented by Danckwerts in his original paper, which led to a
continuity in the solute concentration. The equation is not applicable
when there is variation in some key properties at the outlet, which would
result in a discontinuity.

The variables are made dimensionless:

τ ¼ tu
L
; Z ¼ z

L
; Cb ¼ cb

cb0
; Ct ¼ ct

cb0
; PeL ¼ uL

Db
(8)

These transformations lead to
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1 � ρ � a; Ct ¼ KCb (10)

Z ¼ 0;
∂Cb

∂Z
¼ PeLðCb � 1Þ (11)

Fig. 1. Krogh tissue cylinder model. The concentration in the tissue (radius R) and capillary regions (radius aR) are represented by ct and cb, respectively. The figure is not drawn to scale.
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