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A B S T R A C T

Researchers classify critical neural events during sleep called spindles that are related to memory consolidation
using the method of scalp electroencephalography (EEG). Manual classification is time consuming and is sus-
ceptible to low inter-rater agreement. This could be improved using an automated approach. This study presents
an optimized filter based and thresholding (FBT) model to set up a baseline for comparison to evaluate machine
learning models using naïve features, such as raw signals, peak frequency, and dominant power. The FBT model
allows us to formally define sleep spindles using signal processing but may miss examples most human scorers
would agree are spindles. Machine learning methods in theory should be able to approach performance of human
raters but they require a large quantity of scored data, proper feature representation, intensive feature engi-
neering, and model selection. We evaluate both the FBT model and machine learning models with naïve features.
We show that the machine learning models derived from the FBT model improve classification performance. An
automated approach designed for the current data was applied to the DREAMS dataset [1]. With one of the
expert's annotation as a gold standard, our pipeline yields an excellent sensitivity that is close to a second expert's
scores and with the advantage that it can classify spindles based on multiple channels if more channels are
available. More importantly, our pipeline could be modified as a guide to aid manual annotation of sleep spindles
based on multiple channels quickly (6–10 s for processing a 40-min EEG recording), making spindle detection
faster and more objective.

1. Introduction

1.1. Background

The functional role of sleep in mammals remains a matter of debate
[2–6]. One of the theories is that occurrences of particular neural events
during sleep reflect the processes associated with memory consolidation
[7,8]. It has become a challenge to identify these neural events by simply
viewing the data because it is time consuming and prone to different
interpretations by different viewers, especially in high definition neural
recordings, which contain thousands of data points in just a few seconds
of data. One of the neural recording techniques is to record and monitor
using scalp electroencephalography (EEG).

Macro and micro structures are typically found in segmented EEG
recordings. Macro-structured neural events refer to segments that are
usually 20–30 s long and represent different sleep stages, or levels of

sleep compared to the awake condition [9–11]. On the other hand,
micro-structured neural events refer to local and short segments, such as
sleep spindles. Sleep spindles typically occur during sleep stage 2, and
they are believed to be generated from the thalamus [6,12]. Based on the
dominant frequency of a segment around a spindle, each is classified as a
slow spindle (9–10 Hz [13 14]; 10–12 Hz [13,15,16]) or a fast spindle
(13–15 Hz [15,17]; 12–14 Hz [16]), which are believed to occur during
different phases of slow oscillations (<1 Hz) [18]. Measuring sleep
spindles and analyzing their relationship to behavior and cognition may
provide insight into how these neural events influence memory perfor-
mance, as well as provide diagnostic measurements for various sleep
disorders. It is not completely understood how the brain integrates past
information to generate new memories. Thus, the recording of sleep
spindles provides common and quantifiable measurements of sleep so
that we can connect sleep spindles with memory and describe how the
brain processes information during sleep.
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1.2. Related work

Given that identifying these neural events may provide a powerful
tool to study the relationship between sleep andmemory, it is critical that
we have a standard to define these events [45,46]. Unfortunately, the
definition of spindle features varies across studies. This complicates the
aim to classify spindles automatically [19–23]. Studies that incorporate
machine learning algorithms to classify these neural events usually make
classifications based on a single EEG channel (i.e. Cz) and long period
(>7 h) of recordings. Among all the automated algorithms, filtering based
and thresholding (FBT) approaches have shown some promising results
for classifying sleep stages, spindles, and k-complexes [24,25]. Methods
like template-based filtering and continuous wavelet transforms (CWTs)
[12], Support Vector Machine classifiers (SVM) [26], decision-tree clas-
sifiers [27], and artificial neural networks [28] have also been investi-
gated. However, there are few studies that classify spindles and other
neural events (k-complexes) simultaneously using a unified framework
[29–33]. Visually, a typical spindle (11–16 Hz) has a unique symmetrical
shape along the temporal axis, looking like a football, while other neural
events, such as k-complexes, usually have an asymmetrical shape. This
difference limits regular approaches that rely on an explicitly charac-
terizing both events using signal processing. While distinguishing
different patterns is easy, it remains a challenge to recognize the different
patterns with the same system. The current study focused mainly on
classifying sleep spindles and investigates how the current results might
guide us to classify many other neural events, such as sleep stages and
k-complexes.

1.3. Motivation

The studies mentioned above provide evidence that sophisticated
machine learning algorithms perform better in classifying sleep spindles
against “non-spindles” in segments of neural recordings. However, it is
not useful for small datasets or practical use. First, machine learning al-
gorithms, especially multi-layer neural networks, usually require a large
amount of data (>1000 training samples) and features besides raw sig-
nals are extracted to improve classification performance, but neither is a
common approach in many clinical evaluations of sleep. As we
mentioned above, features for defining a typical spindle varies from
study to study, and features in time-frequency space are usually extracted
to add to the feature list so that traditional single layer machine learning
models learn better about the patterns between spindles and non spin-
dles. Second, machine learning models take a structured segment of the
data (namely an epoch) and return probabilities of whether this segment
of data contains spindles or not. Applying a machine learning model is
challenging for practical use in localizing spindles for several reasons.

The first reason is that it is difficult to localize and recognize neural
events. Neural events like spindles can occur at any moment of a
recording with varying duration (~0.5–2 s), and this makes it difficult to
define a segmenting window to sample representative training data for
machine learning models [36]. It is difficult to construct sampling win-
dows to sample segments containing a full cycle of spindle. With small
windows, we might capture part of a spindle, while with large windows
we might capture too much irrelevant signal around the spindle. To
localize spindles, a model must take the varying duration of spindles into
account and return the locations (time) and the durations (length) of the
spindles. Such a goal could be achieved by using flexible kernels within a
machine learning model and is usually easier to address in recurrent
neural networks with long-short term memory (LSTM) neurons [34].

The second reason is that the sample size of spindles could be small
while the sample size of non-spindles could be large, which are not
optimal for machine learning models [6]. Researchers usually only are
able to sample about 50–200 spindles in a 30-min short nap [7],
regardless of the duration of the spindles. The total sample size of spin-
dles is usually a small fraction of the total recording. However, a suffi-
cient machine learning training takes more than 1000 training samples,

and a LSTM neural network would take more than 5000 training samples.
It is common in short nap periods to sample imbalanced sample sizes of
spindles and non-spindles (e.g., 5 spindles and 95 non-spindles).
Assuming a machine learning model is flexible to take the varying
duration of spindle and non-spindle samples into account, the model
could report at least 95% accuracy by claiming all the samples are
“non-spindles”, but this is not we want to see in practical settings.
Therefore, the imbalanced sample size of the spindle and non-spindle
classes makes preparing training data a difficult problem in sleep
studies [35].

The third reason is that the classification of a spindle is usually made
based on signals of a single channel. Classifying spindles based on a single
channel could misrepresent the global characteristics of spindles, which
we might capture better through a multi-channel approach. Studies have
shown that spindles can be recorded across multiple channels [7]. The
FBT approach includes particular spindle and non-spindle samples based
on global signal patterns across multiple channels (n > 2). Making clas-
sifications based on multiple channels, we could identify spindles that
consistently occur in several regions of the brain.

1.4. Objectives

The objectives of the current study include implementing the FBT
approaches [19] to classify spindles using a short period of high defini-
tion EEG recordings. The FBT approach is designed to classify spindles
quickly with flexible parameters that capture temporal and spectral
variations of the EEG representations of spindles (e.g., frequency, dura-
tion, amplitude, etc.) and serves as a classification bench mark for further
investigation of machine learning models. Furthermore, this study aims
to optimize feature parameters that are used to speed up and aid the
sampling of enough data to train a more accurate fully automated pro-
cess. With enough training data, we hope to eventually define spindles
probabilistically by intuitive features. Thus, we applied our algorithms to
the publically available DREAMS project data [1] with few human inputs
to classify spindles based on a single EEG channel. An additional objec-
tive is to present a state of the art multi-channel FBT approach which
encodes current characterization of spindles with a flexible range of
features. To make a fair comparison among the FBT approach, machine
learning models, and experts' scores, a cross-validation criterion that is
described in the Ray et al. study [37] is used.We applied this algorithm to
our data with six channels of interest to examine how machine learning
models perform better than the FBT approach.

1.5. Novelty and outline of the present study

There are two novel aspects in the current study. The first is that we
propose a nested model of FBT and machine learning, using a fast pro-
cessing FBT model to guide machine learning in model selection. The
second is that we propose a nested machine learning model derived from
the FBT model that can perform well by using simple signal information,
such as raw signal values, peak frequencies, and corresponding power
density values sampled across multiple recording channels. The paper is
structured first by outlining the preprocessing of the EEG data. Then the
implementation, optimization, and cross-validation is detailed. The
development of the machine learning pipeline is then detailed followed
lastly by a comparison of the FBT and machine learning models.

2. Methods

Data Acquisition. A total of 64-channels of EEG data, including 2
EOG electrodes, were continuously recorded at 1 kHz sampling with an
actiCHamp active electrode system (Brain Products, GmbH) while sub-
jects napped on a bed inside a sound-attenuated testing booth (IAC in-
dustries). Experiments were carried out in accordance with the Code of
Ethics of the World Medical Association (Declaration of Helsinki). Each
subject provided written informed consent and completed the study
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