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A B S T R A C T

We examine both maximum likelihood and Bayesian approaches for estimating probabilistic decompression
sickness model parameters. Maximum likelihood estimation treats parameters as fixed values and determines
the best estimate through repeated trials, whereas the Bayesian approach treats parameters as random variables
and determines the parameter probability distributions. We would ultimately like to know the probability that a
parameter lies in a certain range rather than simply make statements about the repeatability of our estimator.
Although both represent powerful methods of inference, for models with complex or multi-peaked likelihoods,
maximum likelihood parameter estimates can prove more difficult to interpret than the estimates of the
parameter distributions provided by the Bayesian approach. For models of decompression sickness, we show
that while these two estimation methods are complementary, the credible intervals generated by the Bayesian
approach are more naturally suited to quantifying uncertainty in the model parameters.

1. Introduction

Decompression sickness (DCS) is a concern for astronauts, aviators,
and scuba divers (military, commercial and recreational). The widely-
accepted cause of DCS is inert gas bubble formation in the body
following one or more exposure(s) to decompression. The symptoms of
DCS can be severe (paralysis, death) to mild (itching, joint pain),
depending heavily upon factors such as the pressure profile to which
the subject was exposed as well as factors related to the individual [1].
Besides its ability to cause human injury, DCS can also be responsible
for mission failure in the military and lost work time in commercial
endeavors, so avoidance of DCS is an area of great interest.

Much emphasis has been placed on DCS modeling in the past. The
Haldane theory was the first to postulate that DCS was caused by
bubbles forming due to nitrogen supersaturation in the body tissues
[2]. The Haldane model prescribed that a diver should ascend at a rate
that does not exceed a 2:1 pressure ratio between the calculated
nitrogen tension in any of five hypothetical body compartments and
the ambient pressure. This deterministic procedure, commonly re-
ferred to as stage decompression, is still in use today.

Berghage et al. [3] and Weathersby et al. [4] were the first to
introduce the concept of probabilistic modeling into the DCS field.
Prior to this, DCS prediction algorithms were deterministic. That is, the
output from the algorithm generated a sharp delineation between a

'safe' and 'unsafe' dive and, therefore, generated a two state (binary)
prediction of dive safety. Probabilistic modeling assumes that the
binary (yes/no) DCS event can be described by a model that assigns
a continuous probability that the dive profile will result in DCS. Also,
the same diver can execute the same dive on different occasions yet
only sometimes experience symptoms. This approach is more in line
with observed empirical data, which has shown that multiple divers can
execute the exact same dive profile but not all of them will experience
symptoms. Empirical dive data were used with these probabilistic
models to estimate model parameters using the method of maximum
likelihood. As the name implies, the method of maximum likelihood
seeks the parameter values that maximize the probability of having
observed the empirical data.

All estimation problems require that we first construct a model1

that we believe predicts the physical phenomenon of interest, in this
case DCS. The job of the estimator is to produce parameter values, χ→,
that are close to the 'true' parameter values that define our model. A
good estimator is one that performs well in the face of the inevitable
uncertainty we have about the underlying process (e.g. noise, model
error, etc.). Additionally, a good model is expected to perform reason-
ably well when applied to data, in this case dive profiles, that are
outside of the training set used in optimizing the parameter values.

There are two basic schools of thought regarding estimation
problems, stemming from two different interpretations of probability.
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1 Note that we could also prescribe multiple models. The growing field of multi-model inference addresses this topic and is not discussed here.

Computers in Biology and Medicine 82 (2017) 3–11

0010-4825/ © 2017 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/00104825
http://www.elsevier.com/locate/compbiomed
http://dx.doi.org/10.1016/j.compbiomed.2017.01.006
http://dx.doi.org/10.1016/j.compbiomed.2017.01.006
http://dx.doi.org/10.1016/j.compbiomed.2017.01.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2017.01.006&domain=pdf


The first, sometimes referred to as the frequentist interpretation,
defines probability in terms of the relative frequencies with which an
event occurs. Using this approach to estimation, one treats the model
parameters as fixed quantities, finds the 'best' estimate (to be defined in
the next section), and generates measures of confidence in the result by
repeating the estimation procedure multiple times, or by making
asymptotic approximations about the estimator variance.

The alternative is to adhere to the axiomatic definition of prob-
ability and treat the parameters as random variables, each obeying its
own probability distribution. The procedure by which this parameter
probability distribution is estimated is described by Bayes’ Rule, hence
is referred to as Bayesian estimation. The final parameter estimate is
often taken as the value that maximizes this distribution (i.e. most
probable); a measure of confidence in the result is obtained by
quantifying the spread of this distribution.

The goal of this work is to compare these two approaches to
estimation in the context of predicting the probability of experiencing
DCS. We are interested both in generating model parameter estimates
that accurately predict observed instances of DCS and in developing
intervals of confidence for those parameter estimates. The DCS model
used in this study was investigated previously by the lead authors, and
was aimed towards predicting the probability of DCS for Navy divers,
as the empirical data to which the model was fitted contained the
results of military dive trials. While the general model is described here
the reader is referred to [5] for a more detailed presentation.

2. Probabilistic DCS model

For the purposes of demonstrating the Bayesian parameter estima-
tion method as applied to probabilistic DCS modeling, we will use the
simple three-compartment exponential model, the EE1(nt) model, that
has been extensively studied elsewhere [5–7]. The model begins with a
dive profile containing a series of 'dive legs' during which the ambient
pressure is either constant or changes with a constant slope in time. For
example, the nitrogen partial pressure, PN2, for a given dive leg can be
written as

P P R t t= + ( − )N N N
0

02 2 2 (1)

where PN
0

2 is the nitrogen partial pressure at the beginning of the dive
leg, the constant-slope rate of change of the nitrogen partial pressure is
given by RN2, and t0 represents the time at which the particular dive leg
begins. An entire dive profile is thus created by connecting a series of
either constant depth or constant-slope dive legs. This creates dive
profiles with continuous ambient pressure traces. The nitrogen partial
pressure, however, need not be continuous in time. A discontinuous
nitrogen partial pressure can result if abrupt changes in the breathing
gas take place. An example of an abrupt breathing gas change occurs if
a diver undergoes decompression procedures involving changes in
breathing gases. In this case, the diver might breathe a specific gas
while at maximum depth, such as 21/35 normoxic trimix (21% O2, 35%
He, remainder N2), and then switch to oxygen or nitrox during a
portion of the decompression phase of the dive. However, even with gas
switching, the change between the two gasses is assumed to occur over
a short duration, typically, 0.1 min.

For each of the three parallel, well-perfused tissue compartments in
the EE1(nt) model, the arterial nitrogen partial pressure – or nitrogen
tension – is assumed to be equal to the alveolar nitrogen tension.
Therefore, using a well stirred analogy to a mixing problem, we may
write a change in the nitrogen tissue tension for the ith compartment PTi,
as

dP
dt
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i
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where each compartment has a unique tissue rate, ki. For the present
work, i = 1..3. The tissue inlet and outlet inert gas tensions are shown
in Eq. (2) by the respective symbols PTin and PTout . When we make the

assumption that PTin changes according to Eq. (1) and that P P=T Ti out i, ,
we arrive at a simple system of uncoupled linear, first-order differential
equations for the change in the compartment gas tensions

dP
dt
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which admit the solutions
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where the constants
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are fixed for each leg of the dive profile.
Following Weathersby et al. [4,8–10] and Thalmann et al. [6,7] the

probability that a diver may experience DCS during a particular dive
profile can be approximated using the failure model

∫
P DCS e( ) = 1 −

∑ g r dt−
i

i i
(6)

for a suitable risk (or hazard) function, ri. We choose the super-
saturation ratio risk function
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where the subscript i was previously defined, P fsw= 6.34FVG (feet of sea
water, fsw atm33.066 = 1 ) is the partial pressure of the fixed venous
gases, and Pamb is the ambient pressure. The integrated risk for each
tissue compartment is scaled by a compartment-specific gain para-
meter, gi, as shown in Eq. (6).

In order to fit the model to empirical data, many previous studies
have used log likelihood maximization as originally proposed for
decompression models by Weathersby et al. [4]. A number of techni-
ques may be used to maximize the log likelihood such as various
gradient-based methods, simulated annealing, simplex, or other meth-
ods. All of these methods attempt to adjust the free parameter vector,
here, χ g g g k k k→ = ( , , , , , )1 2 3 1 2 3 , until the best fit is achieved between the
model and the empirical data. For the present problem, the log
likelihood, LL, is defined by

∑LL log P DCS P DCS= [ ( ) (1 − ( )) ]
d

ND

d
δ

d
δ

=1

1−

(8)

where the summation occurs over the ND dive profiles comprising the
data set. Additionally, in Eq. (8), P DCS( )d is the probability that a diver
develops DCS for the dth dive profile and δ is the binary outcome
indicator. That is, δ = 1 if DCS occurred in the data for that dive profile
and δ = 0 otherwise. When viewed from the frequentist approach, the
log likelihood (Eq. (8)) gives us the log probability of observing the
outcomes of the empirical data, y→, given the parameter set χ→. We will
denote this as P y χ(→|→)L .

3. Brief review of maximum likelihood estimation and
Bayesian estimation

Central to both maximum likelihood and Bayesian approaches to
inference is the likelihood [11] which describes the joint probability of
our sequence of observations y→ given model parameters χ→. It would
therefore make sense to define the 'best' estimate as one that
maximizes this probability. Indeed, maximizing Eq. (8) over all
parameters produces maximum likelihood parameter estimates
(MLPEs), denoted χ̂ . The method of maximum likelihood is a powerful
approach to estimation that comes with some very important guaran-
tees regarding the quality of the estimator. There are (at least) two
properties we would like in an estimator: 1) it be un-biased and 2) it
possesses a small variance. That is to say, if we were to repeatedly
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