
Applied Soft Computing 11 (2011) 3494–3514

Contents lists available at ScienceDirect

Applied Soft Computing

journa l homepage: www.e lsev ier .com/ locate /asoc

Evolutionary repair of faulty software

Andrea Arcuri
Simula Research Laboratory, P.O. Box 134, Lysaker, Norway

a r t i c l e i n f o

Article history:
Received 30 March 2009
Received in revised form 2 August 2010
Accepted 16 January 2011
Available online 28 January 2011

Keywords:
Repair
Fault localization
Automated debugging
Genetic programming
Search Based Software Engineering
Coevolution

a b s t r a c t

Testing and fault localization are very expensive software engineering tasks that have been tried to be
automated. Although many successful techniques have been designed, the actual change of the code for
fixing the discovered faults is still a human-only task. Even in the ideal case in which automated tools
could tell us exactly where the location of a fault is, it is not always trivial how to fix the code. In this
paper we analyse the possibility of automating the complex task of fixing faults. We propose to model
this task as a search problem, and hence to use for example evolutionary algorithms to solve it. We then
discuss the potential of this approach and how its current limitations can be addressed in the future.
This task is extremely challenging and mainly unexplored in the literature. Hence, this paper only covers
an initial investigation and gives directions for future work. A research prototype called JAFF and a case
study are presented to give first validation of this approach.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Software testing is used to reveal the presence of faults in
computer programs [1]. Even if no fault is found, testing cannot
guarantee that the software is fault-free. However, testing can be
used to increase our confidence in the software reliability. Unfor-
tunately, testing is expensive, time consuming and tedious. It is
estimated that testing requires around 50% of the total cost of soft-
ware development [2]. This is the reason why there has been a lot of
effort spent to automate this expensive software engineering task.

Even if an optimal automated system for software testing
existed, to be able to fix the faults we would still need to know
where they are located. Automated techniques can help the tester
in this task [3–5].

Although in some cases it is possible to automatically locate the
faults, there is still the need to modify the code to remove the faults.
Is it possible to automate the task of fixing faults? This would be the
natural next step if we seek for full automated software engineer-
ing. And it would be particularly helpful in the cases of complex
software in which, although the faulty part of code can be identi-
fied, it is difficult to provide a patch for the fault. This would also
be a step forward to achieve corporate visions as for example IBM’s
Autonomic Computing [6].

There has been work on fixing code automatically (e.g. [7–10]).
Unfortunately, in those works there are heavy constraints on the
type of modifications that can be automatically done on the source

E-mail address: arcuri@simula.no

code. Hence, only limited classes of faults can be addressed. The rea-
son for putting these constraints is that there are infinite ways to do
modifications on a program, and checking all of them is impossible.

In this paper we investigate whether it is possible to auto-
matically fix faults in source code without putting any particular
restriction on their type. Because the space of possible modifica-
tions cannot be exhaustively evaluated, we model this task as a
search problem [11,12].

The reformulation of software engineering as a search problem
(i.e., Search Based Software Engineering) has been widely studied
in the recent years. Many software engineering tasks have been
modelled in this way with successful results (e.g., testing [13]). In
many software engineering cases, search algorithms seem to have
better performance than more traditional techniques (e.g. [14,15]).
This was our motivation for applying search algorithms on the task
of automatically repairing faulty software.

Given as input a faulty program and a set of test cases that reveal
the presence of a fault, we want to modify the program to make it
able to pass all the given test cases. To decide which modifications
to do, we use a search algorithm. Note that we want to correct the
source code, and not the state of the computation when it becomes
corrupted (as for example in [16]).

The search space of all possible programs is infinite. However,
“programmers do not create programs at random” [17]. Therefore,
it is reasonable to assume that in most cases the sequences of modi-
fications to repair software would not be very long. This assumption
makes the task less difficult.

We discussed the idea of fixing software with search algorithms
in a doctoral symposium paper [18], and we then presented very
preliminary results on a sorting routine using a limited Lisp-like

1568-4946/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.asoc.2011.01.023

dx.doi.org/10.1016/j.asoc.2011.01.023
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:arcuri@simula.no
dx.doi.org/10.1016/j.asoc.2011.01.023


A. Arcuri / Applied Soft Computing 11 (2011) 3494–3514 3495

programming language [19]. In this paper, we present a novel pro-
totype that is able to handle a large sub-set of the Java programming
language. The case study is based on realistic Java software.

Different types of search algorithms could be used. In this initial
investigation, we consider and compare three search algorithms.
We use a random search as baseline. Then we consider a single
individual algorithm (i.e., a variant of a Hill Climbing (HC)) and a
population based algorithm (i.e., Genetic Programming (GP) [20]).

To improve the performance of these algorithms, we present
a novel search operator that is based on current fault localization
techniques. This operator is able to narrow down the search effort
to promising sub-areas of the search space. Besides providing an
empirical validation, we also theoretically analysed the conditions
for which this operator is helpful.

The main contributions of this paper are:

• We analyse in detail the task of repairing faulty software in an
automatic way. In particular, we characterise the search space of
software repair and we explain for which types of faults our novel
approach can scale up.

• To improve the performance of software repair with search algo-
rithms, we present a novel search operator. This operator is not
limited to the software repair problem. It can be extended to
other applications in which programs are evolved. Theoretical
and empirical analyses confirm that this novel operator eases the
task of repairing software.

• We present a Java prototype called JAFF (Java Automatic Fault
Fixer) for validating our automatic approach for repairing faulty
software. Differently from the work in the literature (e.g.
[7,21,22]), no particular constraint is imposed on the type of mod-
ifications that JAFF can apply to fix faulty software.

• We carried out a large empirical study that confirms that faulty
software can be repaired automatically. It was possible to auto-
matically fix types of faults that current techniques in the
literature are not able to handle (e.g. [7,21,22]). Furthermore, our
analyses show that for this task GP is better than HC and random
search.

The paper is organised as follows. Section 2 gives a brief
overview of the automation of the debugging activity. Section 3
describes how software repair can be modelled as a search prob-
lem. The analysed search algorithms are described in Section 4. The
novel search operator is presented in Section 5. Our research pro-
totype JAFF is presented in Section 6. The case study on which the
proposed framework is evaluated follows in Section 7. Section 8
outlines the limitations of repairing software automatically. Future
directions of research are discussed in Section 9. Finally, Section 10
concludes the paper.

2. Related work

Debugging consists of two separated phases. First, we need to
locate the parts of the code that are responsible for the faults. Then,
we need to repair the software to make it correct. This means that
we need to modify the code to fix it. These changes to the code are
often called patch.

Several different techniques have been proposed to help soft-
ware developers to debug faulty software. We briefly discuss them.
For more details about the early techniques, old surveys were pub-
lished in 1993 [3] and 1998 [4]. A more updated and comprehensive
analysis of the debugging problem can be found in Zeller’s book [5]
and partially in Jones’s thesis [23].

2.1. Fault localization

One of the first techniques to help to locate faults is Algorith-
mic debugging [24,25]. Using a divide-and-conquer strategy, the
computation tree is analysed to find which sub-computation is
incorrect. This approach has two main limitations. First, an oracle
for each sub-computation is required. This is often too expensive
to provide. Second, the precision of the technique is too coarse-
grained.

A slice [26] is a set of code statements that can affect the value of
a particular variable at a certain time during the execution of soft-
ware. Debugging techniques can exploit these slices to focus on only
the parts of the code that can be responsible for the modification
of suspicious variables [27–29].

In delta debugging [30–33] the trace of a passing execution is
compared against a similar (from the point of view of the execu-
tion flow) one that is instead failed. A binary search is done on the
memory states of these two executions to narrow down the inspec-
tion of suspicious code. The memory states of the failing execution
are altered to see whether these alterations remove the failure.
This technique is computationally very expensive. Finding two test
cases with nearly identical execution path, but one passing and the
other failing, can be difficult. If all the provided test cases fail, then
this technique cannot be applied.

Software developers often make common mistakes that are
practically independent from the semantics of the software. Typi-
cal example is opening a stream and then not closing it. Another
is sub-classing a method with a new one that has very similar
name (doing this has the wrong result of having a new method
instead of sub-classing the previous one). Many of these mistakes
can be found by statically analysing the source code without run-
ning any test case. A set of bug patterns can be defined and used
to see whether a program has any of this known mistakes [34–36].
On one hand, this technique has the limitation that it can find only
faults for which a pattern can be defined. On the other hand, it
is a very cheap technique that does not require any test case. It
can be easily applied on large real-world software and it can point
out many possible sources of faults. This type of static analysis can
be improved with data mining techniques applied to real-world
source code repositories [37].

In large real-world software, it is common that parts of code
result from copy-and-paste activities. This has been shown to be
very prone to introduce faults, because for example often the devel-
opers forget to modify identifiers. If the software does not give any
compiling error, then it is very difficult to find this type of fault.
Data mining techniques to identify copy-and-paste faults have been
proposed [38].

If the behavioural model of software is available (expressed for
example with a finite state machine), one black-box approach is
to identify which components of the model are wrongly imple-
mented in the code [39]. Similar to mutation testing [17], the idea
is to mutate the model with operators that mimic common types
of mistakes done by software developers. Confirming sequences are
then generated from the mutated models and validated against
the tested program [39]. The mutated models represent hypothesis
about the nature of the faults.

To understand the reason why a fault appears, software devel-
opers speculate about the possible reasons. This translates to
questions about the code. Tools such as Whyline [40] automatically
present to the user questions about properties of the output, and
then they try to give explanations/answers based on the code and
the program execution.

Given a set of test cases, coverage criteria can be used as heuristic
to locate faults [41]. On the one hand, parts of code that are executed
only by passed test cases cannot be responsible for the faults. On
the other hand, code that is executed only by the failing test cases is



Download English Version:

https://daneshyari.com/en/article/496498

Download Persian Version:

https://daneshyari.com/article/496498

Daneshyari.com

https://daneshyari.com/en/article/496498
https://daneshyari.com/article/496498
https://daneshyari.com

