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A B S T R A C T

Stochastic electroencephalogram (EEG) signals are known to be nonstationary and often multicomponential.
Detecting and extracting their components may help clinicians to localize brain neurological dysfunctionalities
for patients with motor control disorders due to the fact that movement-related cortical activities are reflected in
spectral EEG changes. A new algorithm for EEG signal components detection from its time-frequency
distribution (TFD) has been proposed in this paper. The algorithm utilizes the modification of the Rényi
entropy-based technique for number of components estimation, called short-term Rényi entropy (STRE), and
upgraded by an iterative algorithm which was shown to enhance existing approaches. Combined with
instantaneous frequency (IF) estimation, the proposed method was applied to EEG signal analysis both in
noise-free and noisy environments for limb movements EEG signals, and was shown to be an efficient technique
providing spectral description of brain activities at each electrode location up to moderate additive noise levels.
Furthermore, the obtained information concerning the number of EEG signal components and their IFs show
potentials to enhance diagnostics and treatment of neurological disorders for patients with motor control
illnesses.

1. Introduction

Most of biomedical signals, including electroencephalogram (EEG)
records, are nonstationary and often multicomponental stochastic.
Such signals are widely used in clinic diagnostics to detect illnesses
and abnormalities in functioning of the central nervous system. Those
nonstationarities often contain significant information concerning
underlying clinical pathophysiological processes [1–6]. The traditional
approach to their analysis includes empirical visual pattern recognition
of pathology features done by medical experts. However, more recent
approaches complement the traditional approach by computer-aided
signal processing methods resulting in a more accurate and objective
EEG analysis technique capable to quantify and categorize EEG signal
features [7–12].

Some of the first computer-aided quantitative approaches to
analyzing EEG time-series utilized the Fourier transform for the
spectral analysis, followed by applying topographies mapping, com-
pressed spectral arrays, as well as nonlinear dynamic methods [13,14].
The Fourier transform of EEG signals results in their spectral decom-
position enabling quantification of their features in the frequency
domain. However, being a stationary time-series analysis tool, the

Fourier transform does not render significant information concerning
spectral peak timing [15]. Furthermore, in the case of the EEG signals
being obscured by the additive noise, traditional visual inspection of
the EEG signals, as well as classical mathematical tools, such as the
Fourier transform, exhibit strong limitations [16]. Also, filtering the
EEG signal in order to suppress additive noise using the standard
methods in frequency domain may be applied if the noise is located and
limited only to a specific pre-known frequency band. However, this is
not the case in most of the EEG signal processing applications.
Furthermore, standard frequency-domain filtering is well-known to
be highly dependant to the proper filter parameters selection and the
chosen filter design, as well as to cause unavoidable effects to
morphology of low frequencies when filtering the high ones (significant
EEG spectral information is low-frequency in the range of 1–20 Hz)
[16,17].

Therefore, the EEG signals analysis requires utilizing computation-
ally more demanding tools suitable for nonstationary signal analysis
both in noise and noise-free environments, such as joint time-
frequency processing techniques, i.e. time-frequency distributions
(TFDs) [1]. TFDs provide a two-dimensional representation of the
EEG signal frequency content varying over time, and thus enable
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detection of the number of signals components and their frequency
range [1].

Exploiting important information packed in the EEG signal spectral
energy variations, observed in joint-time frequency domain, has led to
numerous methods for various features extraction from EEG signals
and their classification [18–25]. TFDs also allow the estimation of
signal instantaneous frequency (IF) (its variation in frequency with
time), making them a natural approach for the EEG signal analysis and
classification [26–31]. A time-frequency based approach upgraded by
the modification of the Rényi entropy, called short-term Rényi entropy
(STRE), for the EEG signal complexity detection has been proposed in
the paper. The STRE was upgraded by the component extraction
procedure that allowes an accurate IF estimation, and applied to
EEG data records of a set of the right and left hand and leg movements
captured by the scalp electrodes (both noisy and noise-free for various
signal-to-noise ratios (SNRs)). As shown in the paper, the method was
proved to be an efficient tool for detecting and analyzing neurological
brain activities, and also robust to noise for up to moderate noise levels.

The paper is structured as follows: Section 2 gives an introduction
to signal time-frequency analysis followed by the definition of signal
complexity based on Rényi entropy of TFDs, presented in Section 3.
The component extraction procedure and the IF estimation are
elaborated in Section 4. A comprehensive discussion of experimental
results is given in Section 5. Conclusion is found the Section 6.

2. Signal representation in the time-frequency domain

TFDs are used in order to introduce multi-dimensionality in the

signal representation. In fact, TFDs are two variable functions, C t f( , )z ,
that show how the frequency contents of signals changes in time [32–
34]. Signal representations in the time-frequency domain find wide
applications in various fields of engineering, including biomedicine,
seismology, radar/sonar analysis, etc. Representing a signal in the
time-frequency domain results in several advantages over the classic
signal representations, such as the ability of identification of signal
features (time and frequency variations) and number of signal compo-
nents, as well as separation of signal components from the background
noise.

In the following subsections some of the widely used TFDs are
introduced, and their basic characteristics shortly summarized.

2.1. The spectrogram

The spectrogram, a simply formulated TFD, obtained by squaring
the magnitude of the short-time Fourier transform (STFT) of signal z(t)
[32–34]

∫S t f t f z τ w t τ e dτ( , ) = |STFT ( , )| = =| ( ) ( − ) | ,z z
j πfτ2
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where w(t) is smoothing window, and t and f are time and frequency,
respectively. Unlike the STFT, obtained by limiting the analyzed signal
with the window function w(t), and hence being a linear time-
frequency transformation, the spectrogram introduces nonlinearity in
the time-frequency representation. In fact, the spectrogram of the sum
of two signals, does not correspond to the sum of the spectrograms of
the two signals [35]. However, this limitation of the spectrogram
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Fig. 1. An example of the number of signal components estimation using the STRE with and without additive noise. (a) Noise-free signal sM(t) time-series. (b) Noise-free signal time-
frequency representation (spectrogram). (c) Noise-free signal local number of components M(p) obtained by the non-iterative algorithm [39]. (d) Noise-free signal local number of
components M(p) obtained by the iterative algorithm [40]. (a) Noisy signal sM(t) time-series (SNR=10). (b) Noisy signal time-frequency representation (spectrogram) (SNR=10). (c)
Noisy signal local number of components M(p) obtained by the non-iterative algorithm (SNR=10) [39]. (d) Noisy signal local number of components M(p) obtained by the iterative
algorithm (SNR=10) [40].
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