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A B S T R A C T

Purpose: This paper presents an adaptive contrast enhancement method based on sigmoidal mapping function
(SACE) used for improving the computerized segmentation of breast lesions on ultrasound.
Methods: First, from the original ultrasound image an intensity variation map is obtained, which is used to
generate local sigmoidal mapping functions related to distinct contextual regions. Then, a bilinear interpolation
scheme is used to transform every original pixel to a new gray level value. Also, four contrast enhancement
techniques widely used in breast ultrasound enhancement are implemented: histogram equalization (HEQ),
contrast limited adaptive histogram equalization (CLAHE), fuzzy enhancement (FEN), and sigmoid based
enhancement (SEN). In addition, these contrast enhancement techniques are considered in a computerized
lesion segmentation scheme based on watershed transformation. The performance comparison among
techniques is assessed in terms of both the quality of contrast enhancement and the segmentation accuracy.
The former is quantified by the measure, where the greater the value, the better the contrast enhancement,
whereas the latter is calculated by the Jaccard index, which should tend towards unity to indicate adequate
segmentation.
Results: The experiments consider a data set with 500 breast ultrasound images. The results show that SACE
outperforms its counterparts, where the median values for the measure are: SACE: 139.4, SEN: 68.2, HEQ:
64.1, CLAHE: 62.8, and FEN: 7.9. Considering the segmentation performance results, the SACE method
presents the largest accuracy, where the median values for the Jaccard index are: SACE: 0.81, FEN: 0.80,
CLAHE: 0.79, HEQ: 77, and SEN: 0.63.
Conclusion: The SACE method performs well due to the combination of three elements: (1) the intensity
variation map reduces intensity variations that could distort the real response of the mapping function, (2) the
sigmoidal mapping function enhances the gray level range where the transition between lesion and background
is found, and (3) the adaptive enhancing scheme for coping with local contrasts. Hence, the SACE approach is
appropriate for enhancing contrast before computerized lesion segmentation.

1. Introduction

Although several definitions about contrast can be found, for the
purpose of this study, contrast is defined as the difference in intensity
of adjacent regions of the image [1]. In breast ultrasound, the contrast
between a potential lesion and its adjacent tissue should be easily
perceived for image analysis purpose [2]. Nevertheless, the ultrasound
image quality (e.g., resolution and contrast) is generally limited due to
different factors such as shadowing, reverberation, speckle, noise, etc.,
which are originated from the physical phenomena of image acquisi-
tion and imperfections of the imaging system [3]. In addition, the

success of the imaging procedure is highly operator dependent [4].
Thus, image enhancement techniques are used to increase the obser-
vability of subtle features in the image [2]. In this sense, a contrast
enhancement stage is recommended to improve computer-aided
processes like lesion segmentation [5], mainly, in gradient-based
segmentation methods that attempt to find the largest intensity change
between the lesion's margin and its surrounding tissue. Some ap-
proaches of these kind of methods for breast ultrasound are based on
active contour models [6–8], radial gradient measurements [9,10], and
morphological operators [11,12]. Also, segmentation methods for
three-dimensional breast ultrasound usually apply a contrast enhance-
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ment stage before lesion segmentation [13,14].
Generally, contrast enhancement is performed by an intensity

transformation, where an input pixel value is mapped into a new one
by means of a mapping function [15]. In this context, histogram
equalization [16,17] is often applied on breast ultrasound images [18–
24]. This method is suitable for overall enhancement because it creates
an intensity mapping function by considering all pixel data in the
image. However, local brightness features in the input image could be
unpreserved, that is, intensity levels with very high occurrence usually
dominate over the lower ones. Additionally, when the contrast of
homogeneous regions increases, the background noise could also
increase noticeably [15]. To overcome this limitation, contrast limited
adaptive histogram equalization (CLAHE) [25] has been used in breast
ultrasound images [10,26]. In CLAHE, contextual regions are en-
hanced from local transformation functions, where a clip level imposes
a maximum number of pixels for every gray level in the image. Hence,
the enhancement is reduced in uniform regions of the image, which
prevents over enhancement of noise.

Because breast ultrasound images present some degree of fuzziness,
such as indistinct borders, ill-defined mass shapes and different tumor
densities, fuzzy enhancement has been applied [5]. Commonly, fuzzy
enhancement techniques transform the image histogram to the fuzzy
domain using a fuzzy membership function such as the S-shaped
function [27]. In general, fuzzy enhancement is based on four steps:
gray-level normalization, image fuzzification, contrast enhancement,
and image defuzzification [5,28]. The basic difference among fuzzy
enhancement methods is found in the third step. For instance, Guo
et al. [5] performed contrast enhancement by incorporating edge and
texture information, whereas Taghvatalab and Faez [28] divided the
fuzzy histogram into multiple sub histograms aiming to preserve image
brightness.

Similarly to the S-shaped function, the sigmoid function has been
used to enhance the tumor contrast in breast ultrasound images [29–
31]. This non-linear mapping enhances a specific set of intensity values
related to the tumor region and progressively decreases the values
outside the region.

Since ultrasound images are inherently corrupted by speckle
artifact and shadows, a contrast enhancement technique should be
capable of enhancing the tumor region considering the local contrast,
independently of the strength of the local noise. However, excepting
CLAHE, the above mentioned methods process the image globally, that
is, the local contrast is neglected. Also, they compute the mapping
function directly from the speckled image, where spurious peaks in the
gray level histogram could distort the mapping function. In addition,
some techniques require parameter adjusting (e.g., level clip or
distortion factors), which are defined heuristically.

In this paper, an adaptive contrast enhancement technique for
improving the computerized segmentation of breast lesions on ultra-
sound is presented. The performance of the proposed technique is
compared with four published contrast enhancement techniques often
used for enhancing breast ultrasound images. Such comparison is
performed in terms of both the quality of contrast enhancement and
the computerized segmentation accuracy.

2. Basic concepts

2.1. Intensity transformation

Generally, given an input image with L gray-level values, contrast
enhancement is performed by an intensity transformation that maps an
input pixel value, g, into a new one, g′. Both pixel values are related by
the expression g T g′ = ( ), where T(g) is a transformation (or mapping)
function applied to the original gray level g [15].

For creating the transformation function, the gray level probability
density function (PDF) in the range L[0, − 1] is analyzed, where g=0
represents black and g L= − 1 represents white. The PDF is given by

p g n N( ) = /g , where ng is the number of pixels in the image with
intensity g and N is the total number of pixels in the image. Note that
the discrete function h g n( ) = g represents the image histogram; there-

fore, p g h g N( ) = ( )/ and p g∑ ( ) = 1g
g L

=0
= −1 .

A transformation function should satisfy the following two condi-
tions [15]:

(a) T(g) is a monotonically increasing function in the interval
g L0 ≤ ≤ − 1, and

(b) T g L0 ≤ ( ) ≤ − 1 for g L0 ≤ ≤ − 1,

where condition (a) preserves the order of intensity levels to prevent
artifacts created by reversals of intensity, whereas condition (b)
guarantees the same range of input and output intensities.

2.2. Bilinear interpolation

In adaptive contrast enhancement techniques, such as CLAHE, a
transformation function is applied on a suitable number of blocks or
tiles to avoid noise amplification in homogeneous areas [25]. To speed
up the contrast enhancement procedure, non overlapped contextual
regions are processed. However, if each region is mapped only by its
own transformation function, an undesirable ‘blocky’ effect could
appear. To overcome this effect, a sampling and interpolation scheme
is proposed by Pizer et al [32].

First, sampling points are defined over the entire image, whose
locations are usually at the center of contextual regions. Then, every
original pixel in the image, g, is transformed by the gray level
distributions of the neighboring contextual regions as illustrated in
Fig. 1. Let A, B, C, and D be the center points of the surrounding
contextual regions, whose corresponding transformation functions are
denoted as TA(g), TB(g), TC(g), and TD(g), respectively. The new pixel
gray level, g′, is calculated by bilinear interpolation of its neighboring
transformation functions as [25]:

g y x T g xT g y x T g xT g′ = (1 − )[(1 − ) ( ) + ( )] + [(1 − ) ( ) + ( )],A B C D (1)

where x and y are normalized distances with respect to point A.

3. Proposed approach

The proposed adaptive contrast enhancement method involves:
computing an intensity variation map, calculating a sigmoidal mapping
function for each contextual region in the intensity variation map, and

Fig. 1. Sampling and interpolation scheme used for adaptive contrast enhancement.
Points A, B, C, and D represent the centers of contextual regions and g is the point to be
interpolated by the linear combination of the transformation functions TA(g), TB(g),
TC(g), and TD(g).

W.G. Flores, W.C.d.A. Pereira Computers in Biology and Medicine 80 (2017) 14–23

15



Download English Version:

https://daneshyari.com/en/article/4965005

Download Persian Version:

https://daneshyari.com/article/4965005

Daneshyari.com

https://daneshyari.com/en/article/4965005
https://daneshyari.com/article/4965005
https://daneshyari.com

