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A B S T R A C T

Human gait is a complex interaction of many nonlinear systems and stride intervals exhibiting self-similarity
over long time scales that can be modeled as a fractal process. The scaling exponent represents the fractal degree
and can be interpreted as a “biomarker” of relative diseases. The previous study showed that the average wavelet
method provides the most accurate results to estimate this scaling exponent when applied to stride interval time
series. The purpose of this paper is to determine the most suitable mother wavelet for the average wavelet
method. This paper presents a comparative numerical analysis of 16 mother wavelets using simulated and real
fractal signals. Simulated fractal signals were generated under varying signal lengths and scaling exponents that
indicate a range of physiologically conceivable fractal signals. The five candidates were chosen due to their good
performance on the mean square error test for both short and long signals. Next, we comparatively analyzed
these five mother wavelets for physiologically relevant stride time series lengths. Our analysis showed that the
symlet 2 mother wavelet provides a low mean square error and low variance for long time intervals and
relatively low errors for short signal lengths. It can be considered as the most suitable mother function without
the burden of considering the signal length.

1. Introduction

Walking is the most common mode of human movement [1] and
human gait involves the complex interactions of many nonlinear
systems [2]. Disease, aging, trauma and genetic disorders can all have
significant effects on human gait [3–5]. The locomotor system is a
functional composite system of a number of body systems. The
composite system is the integration of contributions from the central
nervous, musculoskeletal, cardiopulmonary and metabolic systems.
Specific central nervous system input from the cerebellum, motor
and premotor cortices, and the basal ganglia, as well as peripheral
feedback from visual, vestibular and proprioceptive sensors lead to
adjustments and adaptations of locomotor system function relative to
internal and external conditions [2,6]. In a healthy subject, the stride
intervals display long-range power-law correlation, which may be the
result of peripheral input or lower motorneuron control, or of the
walking rhythm as controlled by higher nervous system centers [7].

Stride interval times series possess complex statistical properties
[6,7,4,8]. Variance in healthy stride interval is not truly random and
possesses temporal structure from one stride to the next [7,4]. Stride
interval demonstrates fractal characteristics meaning that the stride to

stride variations over a few strides are similar to those over hundreds of
strides [4,9,10]. Fractal processes can be used to describe the natural
irregularity of gait process because of temporal correlation [8].

Neurophysiological changes may alter the stride–interval correla-
tions. Advanced age is an example of one condition known to affect
neurophysiology and impact gait. These effects include decreased nerve
conduction velocity, loss of motoneurons, decreased reflexes, reduced
muscle strength, decreased proprioception and reduced central proces-
sing capabilities [7]. Parkinson's disease and Huntington's disease are
neurodegenerative disorders of the central nervous system that pro-
duce pathological changes in the basal ganglia. These changes in basal
ganglia may be associated with diminished stride–interval correlations
associated with these disorders [7]. Amyotrophic lateral sclerosis
affects the motoneurons of the cerebral cortex, brain stem, and spinal
cord, and has been related to changes in walking speed [4]. A
commonality seen in all of these neurodegenerative conditions and
diseases has been an increase in the stride interval time and the
magnitude of fluctuation as related to the fractal [7,4].

Many studies have showed the fractal properties of stride interval
time series in different pathologies such as amyotrophic lateral
sclerosis [4], Huntington's disease [4,7], and Parkinson's disease
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[11,12]. Most of studies are based on detrended fluctuation analysis
(DFA). For example, the presence of fractal properties in gait during
auditory cues was revealed using the DFA method [13]. In [14],
authors controlled the movements of subjects and reinterpreted DFA
of minimizing the stride-to-stride variations in walking speed. Certain
recent works focus on using machine learning techniques, such as
support vector machine and hidden Markov model, for different gait
patterns recognition and disease diagnosis [15–19]. Wavelet-based
signal projection was also applied for classifying gait signals of certain
neurological disorders [20]. Some other works in this direction
differentiated patients with neurodegenerative diseases using phase
synchronization and conditional entropy [21].

It has been shown that stride intervals represent a stochastic
process with power spectral density equal to S f( ) = C

f| |
ω
β [22]. β value

can be estimated in the time domain using techniques such as
dispersional analysis, bridge detrended scaled window variance and
detrended fluctuation analysis [23,24], in the frequency domain by
using the PSEwe

low method [25], and in the time-scale domain with the
average wavelet coefficient (AWC) method [26]. Previous contributions
have shown that the AWC method shows a uniform performance for
the range of fGn and fBm class signals [6].

The purpose of this paper is to determine the most suitable mother
wavelet for the average wavelet coefficient method to accurately
estimate the β exponent in f1/ β processes and to highlight the
limitations of these mother wavelets. The tests include the f1/ β process
which is the best indicator of simulated signals of physiological
processes. To achieve our goal, we used simulated f1/ β processes with
characteristics similar to stride interval time series, and we also used
stride interval time series obtained from several patient groups [27].

2. Methodology

2.1. f1/ β Processes

The f1/ β processes are statistically self-similar random processes
that generally have an inverse power relationship between measured
power spectra and frequency S f f( ) = 1/ β [27–33]. In general, the f1/ β

processes are classified into two different models: fractional Brownian
motion (fBm) and fractional Gaussian noise (fGn), as proposed by
Kolmogorov [27,33,34]. Fractional Brownian motions are processes
corresponding to β1 < < 3, where β = 2 represent the Wienner
process, which entails classical Brownian motion. The fractal
Gaussian noise represents processes corresponding to β−1 < < 1,
while β = 0 is stationary white Gaussian noise that has a flat spectrum
[27,33]. The two models are degenerated at the boundary where
β = − 1, β = 1, β = 3 [33]. The fractional Brownian motion process is
nonstationary with stationary increments, while the Gaussian noise
process is stationary [27,28,33]. The probability distribution of fGn
signal is independent of segment length and position [27]. For the fBm
signal, the probability distribution in the short sampled segment is
equal to the long segment when the long segment is rescaled [27].
There is infinite low-frequency power for fractional Brownian motion
that has finite power in any finite time interval and for the fractional
Gaussian noise there is infinite high-frequency power [33,35]. The
cumulative summation of the nonstationary fBn signals results in fGn
signals [27,33,36].

The Hurst exponent can be estimated by the average wavelet
coefficient method. The Hurst exponent is a parameter related to the
fractal dimension, which represents the smoothness of a time series
[37]. The relationship between Hurst exponent and the fractal dimen-
sion is given as follows: D H= 2 − , where the range of H is H0 < < 1.
The relationship between each class's Hurst exponent and f1/ β is [38]:

H β H β= + 1
2

= − 1
2fGn fBm (1)

The Hurst exponent can be denoted as HfGn and HfBm, and the

processes differ in significant ways corresponding to H0 ≤ ≤ 0.5,
H=0.5, and H0 ≤ ≤ 1 [34]. H=0.5 is the special case, here H = 0.5fGn
means white Gaussian noise and H = 0.5fBm is Brownian motion.
H < 0.5fGn is anti-correlated Gaussian noise while H > 0.5fGn is corre-
lated noise [28]. H < 0.5fBm is anti-persistent Brownian motion while
H < 0.5fBm is persistent Brownian motion [28]. From the equations we
gather that β = 0 is white Gaussian noise, β = 1 is pink noise, and β = 2
is Brownian motion.

The concept of fractals can be used to model certain aspects of
physiological dynamics such as fractal lungs, blood pressure, walking
and hearts [7,23,39–41]. Healthy heart rate, blood pressure and
walking produce pink noise in the output signal. These noises lose
their f1/ characteristics due to age and disease, becoming either white
or Brownian [22,42,43]. For example, the gait of patients with
Parkinson's disease has stochastic behavior similar to the Brownian
process [22,44].

2.2. Estimating β values via the average wavelet coefficient method

The wavelet transform maps the time domain waveforms into a
scale-–time domain and estimates the signals both in the both time and
scale domains [45,56]. The main idea of wavelet transform is to
compare the similarity between an original waveform and the basic
function called mother wavelet. The calculation of a process generates a
dilated and translated version of the mother wavelet and the process of
calculations performed at every scale and time point represents the
continuous wavelet transform, which is usually used to study the fractal
process [5]. The wavelet is denoted by a scale parameter a and a
translation parameter b, where a is a positive number and b is a real
number. The wavelet basis can be given by a single function called
mother function [46]:

⎛
⎝⎜

⎞
⎠⎟ψ x ψ x b

a
( ) = −

a b; (2)

The continuous wavelet transform is given as

∫W h a b
a

ψ x h x dx[ ]( , ) = 1 * ( ) ( )a b−∞

∞

; (3)

Mother wavelet represents the basic function for the wavelet transform
as does the sine in the Fourier transform. Fig. 1 illustrates some
commonly used mother functions in our experiments [47].

The average wavelet coefficient method is used to estimate the
Hurst exponents. To find the Hurst transform, the data is transformed
into the wavelet domain by using wavelet and the arithmetic mean is
used to calculate the averaged wavelet coefficient with the following

Fig. 1. Example mother wavelets used in our experiments.
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