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In this study, we proposed a generic methodology for combining high-dimensional spatial data to identify and
visualize the hidden spatial patterns in a single-layer geo-map. By using the less explored one-dimensional
self-organizing maps, we showed how the high-dimensional data can be transformed into a spectrum of one-di-
mensional ordered numbers. These numbers (codes) can index a high-dimensional space with the important
property that similar indices refer to similar high-dimensional contexts. Thus, the high-dimensional vectors
will be attributed to single numbers, and this one-dimensional output can be easily rendered as a new single
data layer in the original geographic map. As a result, it simultaneously identifies the main spatial clusters and
visualizes the high-dimensional correlations (if any) in a single geographic map. Further, because the output of
the proposed method is a set of ordered indices, there is no need to define a fixed number of clusters in advance.
Because these composite spatial layers are identified on the basis of the selected context (i.e., the selected fea-
tures or aspects of the spatial phenomena), they are called contextual maps.
Finally, we showed the results of applying the proposed methodology to several synthetic and real-world data
sets.
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1. Introduction

With the current rapid growth in the amount of digital data, we
must address the challenge offinding appropriate techniques to harness
the power of these data streams. For example, in many cities across the
world, no longer does anyone lack access to digital spatial maps; in-
stead, the current challenge is, considering the amount and diversity
of these digital data regarding different aspects of the cities, how one
can picture his/her own map of the space as a combination of several
factors of interest.

Toward this direction, there have been several interesting cases such
as peoplemaps1 or Livehood projects (Cranshaw, Schwartz, Hong, &
Sadeh, 2012), which are explorations and mapping of activities within
cities based on data available from online social networks. One of the
cases most similar to our work is a project called Whereabout,2 where
by applying the K-means data-clustering algorithm to a collection of
spatial data consisting of N200 different aspects of each ward in the
city of London, a fixed number of groups were created by grouping
based on informational similarities (not physical locations). Then, on
top of the classical map of London, people get an impression of different
regions on the basis of their similarities in all of these categories. In a

similar manner, but only based on demographic information, a new
coding system of London called LOAC was developed (Longley &
Singleton, 2014).

The classical clustering algorithms divide the high-dimensional data
space into a predetermined number of groups, where eachwill be given
a label (usually an arbitrary number). Then, these cluster labels attribut-
ed to each spatial data point can be visualized on the geographic map
with a specified color code. However, despite the fact that standard clus-
teringmethods such as K-means are easy to use, they have some limita-
tions in the domain of spatial pattern recognition. One of the main
problems is that they divide the space into a small number of categories.
Instead, it would be preferred to have a continuous and smooth chang-
ing pattern on top of the high-dimensional data. Further, one needs to
select the number of clusters in advance, which is a critical decision
(Tibshirani, Walther, & Hastie, 2001). In addition, in the context of spa-
tial clustering, because the cluster labels are not ordered according to
their high-dimensional similarities, the colored visualization of clusters
in the geographicmap is not directly helpful. Therefore, similar colors in
a clustered geo-map do not necessarily refer to similar high-dimension-
al patterns. As a result, increasing the number of clusters with different
colors may result in final spatial visualizations that are not helpful, but
having too few clusters produces results that are too aggregated. One
current solution to this problem is to create an RGB (red, green, blue)
pattern after data clustering by reducing the high-dimensional vectors
of the cluster centers to their first three principal components
(Mahinthakumar, Hoffman, Hargrove, & Karonis, 1999). However, in

Computers, Environment and Urban Systems 61 (2017) 1–12

E-mail address: svm@arch.ethz.ch.
1 http://peoplemaps.org/.
2 http://whereaboutslondon.org/#/about.

http://dx.doi.org/10.1016/j.compenvurbsys.2016.08.005
0198-9715/© 2016 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Computers, Environment and Urban Systems

j ourna l homepage: www.e lsev ie r .com/ locate /ceus

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compenvurbsys.2016.08.005&domain=pdf
http://dx.doi.org/10.1016/j.compenvurbsys.2016.08.005
mailto:svm@arch.ethz.ch
http://peoplemaps.org
http://whereaboutslondon.org/#/about
Journal logo
http://dx.doi.org/10.1016/j.compenvurbsys.2016.08.005
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/ceus


addition to losing some information (by selecting only three principal
components), the color interpretations will need an additional step.

The main hypothesis of this study is that if we find a method to sort
the clusters in a way such that similar cluster indices refer to similar
contexts (i.e., similar high-dimensional patterns), we can make a direct
projection from high-dimensional spatial data to a one-dimensional
vector and visualize the high-dimensional patterns in the geographical
maps using a simple color spectrum. In thismanner, by havingmany in-
dices instead of dividing the high-dimensional data into a few distinct
groups, one can create a spectrum of high-dimensional patterns that
are visualized with a colored spectrum on spatial maps. Because the
high-dimensional patterns would change gradually, this would also
solve the problem of distinct cluster borders and the fixed number of
clusters. As we show in Section 2, our proposed approach can be
discussed from the viewpoint of dimensionality reduction andmanifold
learning (Bengio, Courville, & Vincent, 2013), where one of the best
methods that satisfies these requirements is self-organizing maps
(SOMs) (Kohonen, 2013).

2. SOMs in the domain of spatial analysis

SOM is a general-purpose machine-learning method that offers in-
teresting solutions to different data-driven modeling tasks (Kohonen,
2013).

SOM is a nonlinear space transformation method that tries to pre-
serve the topology of high-dimensional data, while transforming them
into a low-dimensional space. This means that SOM projects the high-
dimensional data points to a lower-dimensional space (normally a
two-dimensional grid) in a manner such that neighboring objects in
high-dimensional space remain neighbors in low-dimensional space.
This topology-preserving transformation unfolds the nonlinear and
high-dimensional patterns into a low-dimensional space that can be
easily visualized.

Nevertheless, a major difference between SOM and other data-
unfolding and dimensionality reduction methods such as locally linear
embedding (Roweis & Saul, 2000), complete isometric feature mapping
or ISOMAP (Tenenbaum, De Silva, & Langford, 2000) and t-distributed
stochastic neighbor embedding, known as t-SNE (Van der Maaten &
Hinton, 2008) is that it creates an abstraction of the data into new pro-
totypes, while in typical dimensionality reduction methods, there is al-
ways a one-to-one relationship between all the observed points in the
high- and low-dimensional space. In SOM algorithm, these identified
abstract prototypes (usually called nodes or codebooks) are essential el-
ements for the pattern recognition and data reduction tasks such as
clustering. These nodes have a dual representation, including a low-di-
mensional vector, showing the location of the node in the lower-dimen-
sional space, and a high-dimensional weight vector, which has the same
dimensionality as the original high-dimensional data. Therefore, these
nodes, as distributedmodels of the training data, can be used separately
in different modeling problems. This property of SOMmakes it very at-
tractive for many tasks such as data visualization, function approxima-
tion, and data clustering in general. In the domain of spatial analysis,
SOM has been used in several applications (Delmelle, Thill, Furuseth,
& Ludden, 2013; Frenkel, Bendit, & Kaplan, 2013; Agarwal & Skupin,
2008; Skupin & Esperbé, 2011; Wang, Biggs, & Skupin, 2013 and
Arribas-Bel, Nijkamp, & Scholten, 2011; Spielman & Thill, 2008) and is
well-known as a tool for visual data mining and exploration of high di-
mensional spatial interactions (Yan & Thill, 2009).

Because data clustering is an exploratory activity, the high-dimen-
sional maps resulting from the clustering of high-dimensional vectors
using SOM are commonly visualized on two-dimensional colored
maps known as component planes (see Fig. 3 for an example). However,
in the context of spatial clustering, there is normally an extra constraint
on projecting the final outputs of the pattern recognition algorithms
onto the original spatial map. Considering this requirement, the main

problem of classical SOM is that it loses the spatial index of data that
are not part of the training data (Bação, Lobo, & Painho, 2005).

Therefore, one of the main concerns of spatial clustering is how to
consider the effect of spatial coordinates of data points alongside the
other attributes (Bação et al., 2005 and Hagenauer & Helbich, 2013).

Spatial autocorrelation is one of the underlying concepts in spatial
data modeling, which states that physically nearby objects are more
likely to exhibit similar properties (Tobler, 1970).

To address this issue, there are two modifications to the original
SOM. The first approach is to consider the similarity of spatial objects
as a weighted sum of similarity between high-dimensional attributes
and their physical proximity. However, since spatial coordinates are
not semantically comparable with other attributes, this approach is
not widely accepted (Bação et al., 2005). The second approach leads to
a class of spatial variants of SOM such as GeoSOM (Bação et al., 2005;
Henriques, Bacao, & Lobo, 2012), where, the algorithm forces the train-
ing data that spatially similar observations are placed in similar regions
of the low-dimensional map of SOM. Therefore, spatial coordinates and
spatial attributes are contributing next to each other, but not at the
same time in one single distance measure.

A more recent method in this approach is contextual neural gas
(CNG) (Hagenauer & Helbich, 2013), which is based on similar idea to
GeoSOM, but implemented in the context of the neural gas (NG) algo-
rithm (Martinetz & Schulten, 1991). TheNG algorithm is amodified ver-
sion of SOM that unlike SOM there is no defined low dimensional grid
and the nodes are dynamically distributed in the high-dimensional
input space. In the case of CNG, the geographical map is used as the
lower-dimensional representation.

The main contribution of these two spatial variants of SOM (i.e.,
GeoSOM and CNG) is that, to an extent, they replace the original syn-
thetic topology of SOM with a spatial map with the cost of n based
method discussed above, the final two-dimensional SOM grid can be
used as a bivariate color code (Guo, Gahegan, MacEachren, & Zhou,
2005). Although a two-dimensional SOM performs better than the
PCA-based map coloring method, which is a linear dimensionality re-
duction approach, because we are dealing with high-dimensional data,
we need another diagram to connect these bivariate color codes of clus-
ters on top of the SOM grid to show the characteristics of the clusters in
terms of their high-dimensional vectors. As a result, one needs to select
a small number of clusters for better visualization in most of these
applications.

As an alternative approach to those mentioned above, the princi-
ple idea of this study is to view the problem of spatial clustering from
the perspective of manifold learning and dimensionality reduction
(Bengio et al., 2013). In the context of spatial pattern recognition,
this implies that if there exist some underlying spatial similarities
in high-dimensional data that are not easy to track in the original
spatial maps, there should be an appropriate manner of encoding
the data from high-dimensional space to lower-dimensional codes
(specifically to a one-dimensional vector) while preserving the pat-
terns in the encoded data. These low-dimensional codes should
index a high-dimensional state space with the important property
that similar regions in the high-dimensional state space receive sim-
ilar codes. Specifically, if we could encode the high-dimensional vec-
tors as a single-dimensional code, we can treat these codes as a type
of numerical value, and they can be treated as a single layer of spatial
data in the same way that, for example, we can render the surface
temperature in a geographic map. Therefore, if there are spatial pat-
terns in the high-dimensional data, one can quickly see them visual-
ized in the geographical maps. This will solve the abovementioned
problems of the current spatial clustering approaches.

In addition, because we transform the high-dimensional space into
single-dimensional numbers, these numbers can be seen as abstractions
of those high-dimensional spaces that they refer to. Therefore, as we
will show in the following sections, one can combine the results of sev-
eral clustering steps in a systematic and hierarchical manner.
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