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This paper presents an agent based model simulating animal tracking datasets for individual animals based on
observed habitat use characteristics, movement behaviours and environmental context. The model is presented
as an alternative simulation methodology for movement trajectories for animal agents, useful in home range,
habitat use and animal interaction studies. The model was implemented in NetLogo 5.1.0 using observed behav-
ioural data for the Muscovy duck, obtained in a previous study. Four test scenarios were completed to evaluate
the fidelity of model results to behavioural patterns observed in the field. Results suggest the model framework
illustrated in this paper provides an effective alternative to traditional animal movement simulation methods
such as correlated random walks.
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1. Introduction

Researchers simulate tracking data for individual animals for a num-
ber of purposes relevant to both GIScience and ecology. A popular rea-
son is to generate a complete baseline dataset of known tracking data
to testmethods that are useful for analysing samples of VHF, GPS, or sat-
ellite data collected in thefield. For example, simulated trackingdata are
routinely used to test methods of home range analysis, where the per-
formance of different techniques is evaluated for samples of different
sizes, tracking intervals, or other qualities (Downs & Horner, 2009,
2012; Getz et al., 2007; Girard, Ouellet, Courtois, Dussault, & Breton,
2002; Laver & Kelly, 2008). Simulated animal tracking data are also
widely used as reference datasets for the purposes of quantifying animal
interactions. Here, observed data are compared to simulated data to de-
termine if animals come into contact more or less frequently than ex-
pected at random (Long, Nelson, Webb, & Gee, 2014; Miller, 2012,
2015; Richard, Calenge, Said, Hamann, & Gaillard, 2013). Similarly, sim-
ulated animal movement data are used to study habitat preferences of
animals through the use of step selection functions, which compare ob-
served tracking data to simulated random movement data to infer re-
source selection (Duchesne, Fortin, & Rivest, 2015; Forester, Im, &
Rathouz, 2009).

There are severalways that animal tracking data for individuals have
been simulated in practice. The first approach is to generate point pat-
terns of data that conform to particular statistical distributions, such as

Poisson clusters or bivariate normal mixtures (Gitzen & Millspaugh,
2003; Gitzen, Millspaugh, & Kernohan, 2006). Sometimes the geome-
tries of these patterns are modified to create locational data that con-
form to particular shapes (Downs & Horner, 2008). Alternatively, the
density of points in a core location are artificially increased for the pur-
pose of creating data with non-stationary spatial properties consistent
with repeated use of a nest or den site (Downs et al., 2012). Often
times, the generated point data represent an animal's known locations,
and simulated tracking data are created by randomly sampling specified
numbers of points from the distribution. The downside of point pattern
approaches is that the locational data are not generated with explicit
time stamps. This means that consecutive points in the dataset are not
modelled as components of a continuous movement trajectory, which
makes the data less representative of animal movements (Downs,
2010).

Tracking data have been more realistically modelled using random
walk models, such as correlated randomwalks, Lévy walks and step se-
lection functions which simulate an ordered set of spatial locations that
constitute a movement trajectory (Bartumeus, Da Luz, Viswanathan, &
Catalan, 2005; Bergman, Schaefer, & Luttich, 2000; Byers, 2001;
Codling, Plank, & Benhamou, 2008; James, Plank, & Edwards, 2011;
Thurfjell, Ciuti, & Boyce, 2014). Random walk models generally use
two main parameters to model movement: turn angle and step length.
In practice, these two parameters have specified frequency distributions
that are used to control the properties of the modelled trajectory, such
as whether sharp turns or long steps are more or less likely. Tracking
data is simulated in this way by randomly generating values from
those distributions and plotting the resulting spatial coordinates over
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time. Extensions to random walk models use maximum likelihood ap-
proaches to model and incorporate the effects of resource availability
and habitat configuration from observed animal paths into simulated tra-
jectories (Moorcroft, Lewis, & Crabtree, 2006). Additionally, the simulated
data can be constrained to specific spatial areas, such as known home
ranges, so that they better correspond to observeddata or conform to par-
ticular sizes or shapes (Jeanson et al., 2003; Miller, Christman, & Estevez,
2011; Miller, 2012). A limitation of this approach is that turn angles are
not always good predictors of animal movements (Holloway & Miller,
2014; Nams, 2013; Wilson et al., 2013). It is possible that some species
do not have preferences for turning at particular angles, or that other con-
textual factors such as habitat preferences play larger roles in determining
how animals move about space.

A somewhat less explored but promising approach to simulating an-
imal tracking data for individuals involves using an agent-based model
(ABM). Spatially-explicit ABMs are routinely used to model movement
in complex geographical systems for a wide range of applications,
such asmodelling disaster response (Widener, Horner, &Ma, 2015), pe-
destrian behaviour (Torrens et al., 2012), traffic (Manley, Cheng, Penn, &
Emmonds, 2014), crime (Malleson & Birkin, 2012), urban processes
(Ettema, 2011), and humanitarian relief (Crooks & Wise, 2013). ABMs
have been used tomodel animalmovements, though generally the pur-
pose is to model how animals interact with one another and the envi-
ronment across space and time in order to understand dynamic
population and landscape processes, rather than to explicitly simulate
tracking data per se (McLane, Semeniuk, McDermid, & Marceau,
2011). Tang and Bennett (2010) provide an excellent review of ABMs
for animals, some examples include those developed to model migra-
tion (Bennett & Tang, 2006), population dynamics (Carter, Levin,
Barlow, & Grimm, 2015), predator-prey interactions (Ringelman,
2014), and group behaviour (Bonnell et al., 2013; Strombom et al.,
2014).

Though randomwalkmodels may appear similar in function to sim-
ple ABMs, more complex ABMs could potentially be used to simulate
more realistic tracking data for individual animals for testing home
range estimation methods, studying interactions, and related purposes.
The ABM approach differs from random walk models and their deriva-
tives as ABMs generate movement trajectories based on context-
aware decision-making logic defined for each fundamental actor in
the ABMmodel environment. The resulting ABM-generated movement
trajectories represent the aggregate of actor decisions. Consequently,
the ABM approach offers an alternative to empirical reduction or
model fitting on a priori animal trajectory datasets, as used in random
walk implementations or step selection functions (Epstein, 1999). This
paper presents an ABM that simulates animal tracking data for individual
animals based on observed movement behaviour and environmental
context. Themodel uses threemain behavioural variables—habitat transi-
tion, step length, and return time—that operate within the context of an
environment of habitat types. The goal is to develop an alternative plat-
form for simulating animal locational data for future studies, though the
model is created specifically for Muscovy ducks (Cairina moschata) in a
study area where one year of field data on their habitats andmovements
were collected. The paper is organised as follows. Section 2 describes the
modelling framework. Section 3 provides an overview of the field obser-
vations, model simulations, and methods of analysis. The corresponding
modelling and analysis results are detailed in Section 4. Finally, discus-
sions and conclusions are presented in Section 5.

2. Model framework

2.1. Overview

Tang and Bennett (2010) provide a detailed review of spatially-ex-
plicit ABMs and their features. Minimally, an ABM requires three basic
components: agents, environment, and behaviour. Agents are the fun-
damental actors in an ABM; they move about and interact with the

model environment according to sets of behavioural rules. The model
environment provides the context for agent movement and interaction.
For animals, the environment is generally modelled as a set of discrete
patches of habitat thatmay ormay not have other attributes. Behaviour-
al rules control how the agents move within the environment, for in-
stance by specifying possible step lengths or types of habitats that can
be occupied. Movements and actions carried out by agents occur at dis-
crete time steps, or ticks. At each tick, random behaviours are selected
by the model and enacted by agents. In more complex models, agents
have internal states that influence their behaviour, enabling agents to
interact; influencing one another and the environment (Ahern, Smith,
Joshi, & Ding, 2001).

In our model for simulating the movements of a single animal,
though, we specify a single agent—an individual Muscovy duck. The
model environment is composed of a grid of cells, or patches, classified
by habitat types relevant to the species of interest. The duck agent starts
the day at a designated known shoreline roosting location. After that,
the duck's movement is controlled by three sets of behavioural rules
that are explicitly linked to one another: habitat transition, step length,
and return time. The model simulates the duck's movement every 15 s
within and between habitats in the environment over 28 15-hour diur-
nal periods from 06:00:00 to 21:00:00. The 9-hour night time period,
when the duck is expected to roost in the same location on the shore-
line, is not modelled. The model output includes the duck's position
and habitat at each time step. The model is implemented in NetLogo
version 5.1.0, as described below (Fig. 1).

2.2. Agents

The animal species selected for this model is the Muscovy duck. The
Muscovy duck is a species of waterfowl native to South and Central
America, though populations have been introduced nearly worldwide
and are considered invasive in some locales. Though there is little pub-
lished literature on introduced Muscovy ducks, a population of about
120 individuals at the University of South Florida campus in Tampa,
FL, is relatively well studied (Anderson, 2012). A previous study by
Downs et al. (under review) documented habitat use and behavioural
patterns of this population. There, Muscovy ducks occupied urban envi-
ronments where open water was present. They utilized fivemain habitat
types during the daytime:water (pond, lake, orwetland), shoreline (edge
of pond, lake, or wetland), grass (open lawn), tree and shrub cover, and
urban (roads, buildings, parking lots, sidewalks, etc.). They roosted on
shoreline overnight, typically returning several times per day. Additional-
ly, Muscovy ducks are capable of flight, however they fly relatively infre-
quently, locomoting mostly by walking and swimming. Movement data
collected at the same time but not published with those observations
are reported here and used to inform the agent's behavioural rules (see
Section 2.4).

2.3. Model environment

Themodel environments consisted of rectangular grids of cells classi-
fied by habitat type. For this study, two model environments, or habitat
maps, were used for comparison: an observed study area and a random
habitat map (Fig. 2). The study area consisted of a 0.28 km2 area that in-
cluded a pond where a portion of the behavioural data were collected.
The study area was divided into square grid cells at a 5 m resolution.
The choice of a 5 m cell resolution was motivated by the distribution of
distances in observed duck movements, the size and habitat gradient in
the study area, and the need for abstraction in terms of the model imple-
mentation. The 5 m resolution represents a compromise level of abstrac-
tion where both habitat type gradient could be effectively captured and
animal movements effectively simulated. Duck agent location is under-
stood by the model in terms of continuous X/Y coordinates, an agent
can be located at any location within any habitable environment cell.
The study area comprised 86 rows and 132 columns of cells. Each cell
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