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1. Introduction

Fractal behaviour of networks has drawn the interest of researchers
in many fields owing to the fact that it provides a framework for the
treatment of irregular and seemingly complex shapes displaying similar
patterns over a certain range of scales (Tarboton, Bras, & Rodriguez-
[turbe, 1988). These authors demonstrated that river networks can be
viewed as fractal measures, and their fractality was quantified through
the fractal dimension. Indeed, one of the properties of networks is
self-similarity, which is commonly related to fractality. Through the
fractal dimension, fractal objects are defined as a measure of complexity
(Feder, 1988). The fractal dimension is a non-integer number that quan-
tifies the density of the fractal in the metric space, and it is commonly
used as a tool to identify the degree of complexity of a fractal, allowing
comparison with another fractal (Mandelbrot, 1982; Schroeder, 2009;
Tricot, 1995). Moreover, when the complexity of the spatial distribution
of networks cannot be properly characterized by a single fractal dimen-
sion, multifractal analysis is required (Grassberger & Procaccia, 1983;
Halsey, Jensen, Kadanoff, Procaccia, & Shraiman, 1986). Multifractal
analysis can be understood as a generalization of monofractal analysis
by the addition of information about the relative intensity in each
place of the phenomenon under consideration (Sémécurbe, Tannier, &
Roux, 2016). Multifractal analysis provides a distribution of singularities
adequately describing both the heterogeneity of fractal patterns and the
statistical distribution of measurements across spatial scales.

Both fractal and multifractal approaches have also been widely ap-
plied to characterizing natural networks as a useful tool to depict their
spatial distribution and scaling properties in hydrology (De Bartolo,
Gabriele, & Gaudio, 2000; Gaudio, De Bartolo, Primavera, Gabriele, &
Veltri, 2006; ljjasz-Vasquez, Rodriguez-Iturbe, & Bras, 1992; Rinaldo,
Rodriguez-Iturbe, Rigo, ljajasz-Vasquez, & Bras, 1993; Saa, Gascd, Grau,
Antén, & Tarquis, 2007; Schuller, Rao, & Jeong, 2001; Veltri, Veltri, &
Maiolo, 1996), medicine (Schmoll et al., 2011; Zhang, Liu, Dean,
Sahgal, & Yue, 2006), biochemistry (Cheng, Dong, & Wang, 2005; Tang
& Marangoni, 2006), geophysics (Berkowitz & Hadad, 1997), and
manufacturing (EI-Sonbaty, Khashaba, Selmy, & Ali, 2008), among
other. Moreover, Batty and Longley (1994) stated that urban patterns
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can be understood as fractal structures. According to this, urban net-
works (streets, transportation systems, built-up spaces) have been
widely studied from a fractal approach (Batty, 2008; Benguigui, 1995;
Feng & Chen, 2010; Frankhauser, 1998; Tannier & Thomas, 2013),
among others. To date, scarce attention has been directed to the analysis
of multifractality in spatial anthropogenic systems (Ariza-Villaverde,
Jiménez-Hornero, & Guitérrez de Ravé, 2013; Meifeng Dai, Zhang, Li, &
Wu, 2014; Murcio, Masucci, Arcaute, & Batty, 2015), such as urban
transport networks, which feature direct human intervention and delib-
erate decision-making.

Urban transport networks operate on city streets. However, they
cannot serve all streets for cost and accessibility reasons. Transport net-
works are designed to cover the city efficiently and to meet the asym-
metrical demand of passenger movement. In addition, the degree
distributions of their topologies are approximately given by a power
law or exponential function, which is in agreement with Xu, Hu, Liu,
and Liu (2007), whose research focused on bus transport in cities. Public
transport systems in cities tend to share small-world properties
and evince a strong degree-degree correlation that reveals their
complex nature, including underground, railway or airline systems
(Sienkiewicz & Holyst, 2005). Travel routes in rail and bus public trans-
portation systems have also been studied from a complex weighted net-
works perspective. In the case of bus routes, the network appears to
possess a topological hierarchy, with a clustering spectrum decreasing
according to a power law (Soh et al., 2010). All these findings might in-
dicate subjacent (multi-)fractal behaviour in bus networks. In this
study, an urban bus transport network is chosen due to its adaptability
in the short and medium term, as opposed to street planning and roads.
Bus transport systems require less infrastructure investment than tram-
way, underground and local train. In addition, they can be modified eas-
ily and quickly to adapt to changes in the city and urban development
morphology.

Complex networks have also been demonstrated to exhibit self-sim-
ilarity properties (Song, Havlin, & Makse, 2005), involving the fractal
theory. One widely-employed method for fractal analysis of complex
networks is the so-called box-covering algorithm for complex networks
(Song, Gallos, Havlin, & Makse, 2007). These authors compared several
box covering algorithms by applying them to a number of model and
real-world networks. For these networks, box size is given in terms of
network distance, which corresponds to the number of edges on the
shortest path between two nodes (Wei et al., 2013). Simultaneously,
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multifractal analysis of unweighted complex networks has drawn
growing interest in recent years (e.g. Furuya & Yakubo, 2011; Wang,
Yu, & Anh, 2012). Meanwhile, Liu, Yu, and Anh (2015) first introduced
the sandbox algorithm to explore the multifractal behaviour of un-
weighted complex networks, demonstrating that this is the most effec-
tive, feasible and accurate method to estimate multifractal parameters.
Yet, due to the fact that edge-weights values in weighted networks
could be any real numbers excluding zero, fractal and multifractal ap-
proaches were completely unfeasible for weighted networks. To over-
come this drawback, Wei et al. (2013) developed a box-covering
algorithm to determine the fractal dimension of weighted networks,
and recently, an extension of the sandbox algorithm has been devel-
oped by Song, Liu, Yu, and Li (2015). The sandbox method was first in-
troduced by Tél, Fiilop, & Vicsek, 1989 and was later developed by
Vicsek (1990) and Vicsek, Family, and Meakin (1990). De Bartolo,
Gaudio, and Gabriele (2004) generalized the sandbox method for river
networks, highlighting that this method adapts to negative moment or-
ders and solves border effects. It is based on a covering succession of ra-
dius R circles whose centre is randomly distributed in the fractal. The
main advantage of this method is related to the high number of large
boxes obtained and thus, the greater capacity to accurately estimate
multifractal parameters, mainly for negative moment orders, allowing
for the reconstruction of a more accurate multifractal spectrum (Lopes
& Betrouni, 2009).

In this paper, we hypothesize that urban transport networks, as well
as others existing in nature, might exhibit a multifractal behaviour. Ver-
ification of this hypothesis allows us to include their multifractal nature
as another determining factor in designing urban transport networks.
The (multi-)fractal exploration is conducted from two perspectives.
First, in terms of its geometry by means of the traditional box-counting
fractal analysis, and second, by using the recent extension of the
sandbox algorithm for multifractals conducted by Song et al. (2015).
The novelty of the application of this multifractal approach is the
multifractal study of a bus network as a weighted graph, in which
nodes are bus stops and edges are the distance between them.

2. Materials and methods
2.1. Urban bus-transport network

In selecting the urban bus-transport network under study, priority
was given to: i) mobility in the city being conditional on the exclusivity
of a bus transportation system, without alternative public transport,
such as underground, tramway or local trains, available. ii) Absence of
large populations surrounding the city. Cordoba (37°85’N; 4°85'W) is
one of the most populated cities in Spain (327,362 inhabitants), and
its urban public transport system relies solely on its bus network.
Given the dependence of mobility in the city on the bus transport net-
work, urban bus-transport in Cordoba was selected for this study.

The bus network is managed by a municipal company (AUCORSA),
which operates several bus lines classified into three types: urban (Fig.
1), outskirts and temporary services. Meanwhile, outskirts routes con-
nect the city centre with several dependent villages, and temporary ser-
vices operate when required for social and sport events. As the purpose
of this study is to analyse regular mobility within the city, neither out-
skirts nor temporary services were taken into consideration. Urban
routes are comprised by 15 bus lines, which were selected for this
study. Fig. 2 exhibits each bus route (black line) over the complete bus
network (grey line). Every urban line follows a circular route that starts
and finishes at a fixed bus stop. In general, urban lines start out from a
bus stop in a peripheral district and return to the same starting point
having run through the city centre, where most bus stops are shared
among bus lines. This being the case of lines 1, 2, 3, 4, 5, 6, 7, 8,9 and
12. Line 14 is similar to previous ones, but it does not go through the
city centre. Another type of line route connects the city centre with a pe-
ripheral district and returns to the starting point, such as lines 10, 11 and

Fig. 1. Urban bus network of Cordoba.

13. The latter, which is identified as C2, is served by electrical micro-
buses and runs along the right side of the historic district of the city
where motor vehicle traffic is restricted. C2 is characterized by a lack
of bus stops along its route. Table 1 summarizes geometrical character-
istics of the urban bus lines.

The total area considered was a square with a side of 8192 m in
length, resulting in a 67.11 km? map. The urban bus network of Cordoba
is included in a square 4 m resolution image, with each pixel
representing a 16 m? area. This image was subsequently transformed
into a binary matrix, in which pixels containing bus routes take the
value of 1 and the remaining pixels take that of 0. The mass distribution
of pixels containing line routes was analysed by applying the fractal
analysis. Furthermore, the bus network was represented as a set of
nodes (bus stops) and edges (distance between consecutive nodes) in
order to apply the modified sandbox algorithm for weighted networks
(Song et al,, 2015).

2.2. Fractal analysis

Fractal dimensions were calculated by applying the traditional box-
counting method (Mandelbrot, 1982). This procedure consists of cover-
ing the image with different square boxes, which increase the size, r, in
successive steps, and later counting the amount of boxes, N(r), which
are required for completely covering the network. Thus, r and N(r) are
related in a double logarithmic plot in order to determine the fractal di-
mension of the network. Where both variables follow a linear relation-
ship between a specific spatial range of scales, 1y, and ryax, the fractal
nature of the network can be trusted. According to the equation:

_iim _INN(r)
D=, Ta/n (1)

the fractal dimension, D, is estimated from the slope of the linear seg-
ment in the previously defined range.

The choice of an appropriate scaling range is widely known to be a
crucial step, and it must be executed before conducting the fractal anal-
ysis. Selected inner and outer scales usually have a significant effect on
fractal dimensions (Saucier & Muller, 1998). In this regard, configura-
tion entropy explores the effect of scale on any measure defined on a
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