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Urban scholars have studied street networks in various ways, but there are data availability and consistency lim-
itations to the current urban planning/street network analysis literature. To address these challenges, this article
presents OSMnx, a new tool to make the collection of data and creation and analysis of street networks simple,
consistent, automatable and sound from the perspectives of graph theory, transportation, and urban design.
OSMnx contributes five significant capabilities for researchers and practitioners: first, the automated
downloading of political boundaries and building footprints; second, the tailored and automated downloading
and constructing of street network data fromOpenStreetMap; third, the algorithmic correction of network topol-
ogy; fourth, the ability to save street networks to disk as shapefiles, GraphML, or SVG files; and fifth, the ability to
analyze street networks, including calculating routes, projecting and visualizing networks, and calculatingmetric
and topological measures. These measures include those common in urban design and transportation studies, as
well as advanced measures of the structure and topology of the network. Finally, this article presents a simple
case study using OSMnx to construct and analyze street networks in Portland, Oregon.
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1. Introduction

Urban scholars and planners have studied street networks in numer-
ous ways. Some studies focus on the urban form (e.g., Southworth &
Ben-Joseph, 1997; Strano et al., 2013), others on transportation
(e.g., Marshall & Garrick, 2010; Parthasarathi, Levinson, & Hochmair,
2013), and others on the topology, complexity, and resilience of street
networks (e.g., Jiang & Claramunt, 2004; Porta, Crucitti, & Latora, 2006).
This article argues that current limitations of data availability, consisten-
cy, and technology havemade researchers' work gratuitously difficult. In
turn, this empirical literature often suffers from four shortcomingswhich
this article examines: small sample sizes, excessive network simplifica-
tion, difficult reproducibility, and the lack of consistent, easy-to-use
research tools. These shortcomings are by no means fatal, but their
presence limits the scalability, generalizability, and interpretability of
empirical street network research.

To address these challenges, this article presents OSMnx, a new tool
that easily downloads and analyzes street networks for anywhere in the
world. OSMnx contributes five primary capabilities for researchers and
practitioners. First, it enables automated and on-demand downloading
of political boundary geometries, building footprints, and elevations.
Second, it can automate and customize the downloading of street

networks from OpenStreetMap and construct them into multidigraphs.
Third, it can correct and simplify network topology. Fourth, it can save/
load street networks to/from disk in various file formats. Fifth and
finally, OSMnx has built-in functions to analyze street networks, calcu-
late routes, project and visualize networks, and quickly and consistently
calculate various metric and topological measures. These measures
include those common in urban design and transportation studies, as
well as advanced measures of the structure and topology of the
network.

This article is organized as follows. First, it introduces the back-
ground of networks, street network analysis and representation, and
the current landscape of tools for this type of research. Then it discusses
shortcomings and current challenges, situated in the empirical litera-
ture. Next, it introduces OSMnx and its methodological contributions.
Finally, it presents a simple illustrative case study using OSMnx to
construct and analyze street networks in Portland, Oregon, before
concluding with a discussion.

2. Background

Street network analysis has been central to network science since its
nascence: its mathematical foundation, graph theory, was born in the
18th century when Leonhard Euler presented his famous Seven Bridges
of Königsberg problem. Here we briefly trace the fundamentals of
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modern street network research fromgraphs to networks to the present
landscape of research toolkits, in order to identify current limitations.

2.1. Graphs and networks

Network science is built upon the foundation of graph theory, a
branch of discrete mathematics. A graph is an abstract representation
of a set of elements and the connections between them (Trudeau,
1994). The elements are interchangeably called vertices or nodes, and
the connections between themare called links or edges. For consistency,
this article uses the terms nodes and edges. The number of nodes in the
graph (called the degree of the graph) is commonly represented asn and
the number of edges as m. Two nodes are adjacent if an edge connects
them, two edges are adjacent if they share the same node, and a node
and an edge are incident if the edge connects the node to another
node. A node's degree is the number of edges incident to the node, and
its neighbors are all those nodes to which the node is connected by
edges.

An undirected graph's edges point mutually in both directions, but a
directed graph, or digraph, has directed edges (i.e., edge uv points from
node u to node v, but there is not necessarily a reciprocal edge vu). A
self-loop is an edge that connects a single node to itself. Graphs can
also have parallel (i.e., multiple) edges between the same two nodes.
Such graphs are calledmultigraphs, ormultidigraphs if they are directed.

An undirected graph is connected if each of its nodes can be reached
from any other node. A digraph is weakly connected if the undirected
representation of the graph is connected, and strongly connected if
each of its nodes can be reached from any other node. A path is an or-
dered sequence of edges that connects some ordered sequence of
nodes. Two paths are internally node-disjoint if they have no nodes in
common, besides end points. A weighted graph's edges have a weight
attribute to quantify some value, such as importance or impedance, be-
tween connected nodes. The distance between two nodes is the number
of edges in the path between them, while the weighted distance is the
sum of the weight attributes of the edges in the path.

While a graph is an abstract mathematical representation of
elements and their connections, a network may be thought of as a
real-world graph. Networks inherit the terminology of graph theory. Fa-
miliar examples include social networks (where the nodes are humans
and the edges are their interpersonal relationships) and the World
Wide Web (where the nodes are web pages and the edges are hyper-
links that point from one to another). A complex network is one with a
nontrivial topology (the configuration and structure of its nodes and
edges) – that is, the topology is neither fully regular nor fully random.
Most large real-world networks are complex (Newman, 2010). Of
particular interest to this study are complex spatial networks – that is,
complex networks with nodes and/or edges embedded in space
(O'Sullivan, 2014). A street network is an example of a complex spatial
networkwith both nodes and edges embedded in space, as are railways,
power grids, and water and sewage networks (Barthélemy, 2011).

2.2. Representation of street networks

A spatial network is planar if it can be represented in two dimensions
with its edges intersecting only at nodes. A street network, for instance,
may be planar (particularly at certain small scales), but most street net-
works are non-planar due to grade-separated expressways, overpasses,
bridges, and tunnels. Despite this, most quantitative studies of urban
street networks represent them as planar (e.g., Barthélemy &
Flammini, 2008; Buhl et al., 2006; Cardillo, Scellato, Latora, & Porta,
2006; Masucci, Smith, Crooks, & Batty, 2009; Strano et al., 2013) for
tractability because bridges and tunnels are reasonably uncommon (in
certain places) – thus the networks are approximately planar. However,
this over-simplification to planarity for tractability may be unnecessary
and can cause analytical problems, as we discuss shortly.

The street networks discussed so far are primal: the graphs represent
intersections as nodes and street segments as edges. In contrast, a dual
graph (namely, the edge-to-node dual graph, also called the line
graph) inverts this topology: it represents a city's streets as nodes and
intersections as edges (Porta et al., 2006). Such a representation may
seem a bit odd but provides certain advantages in analyzing the net-
work topology based on named streets (Crucitti, Latora, & Porta,
2006). Dual graphs form the foundation of space syntax, amethod of an-
alyzing urban networks and configuration via axial street lines and the
depth from one edge to others (Hillier, Leaman, Stansall, & Bedford,
1976; cf. Ratti, 2004). Jiang and Claramunt (2002) integrate an adapted
space syntax – compensating for difficulties with axial lines – into com-
putational GIS. Space syntax has formed the basis of various other
adapted approaches to analytical urban design (e.g., Karimi, 2012).

This present article, however, focuses on primal graphs because they
retain all the geographic, spatial, metric information essential to urban
form and design that dual representations discard: all the geographic,
experiential traits of the street (such as its length, shape, circuity,
width, etc.) are lost in a dual graph. A primal graph, by contrast, can
faithfully represent all the spatial characteristics of a street. Primal
may be a better approach for analyzing spatial networks when geogra-
phy matters, because the physical space underlying the network con-
tains relevant information that cannot exist in the network's topology
alone (Ratti, 2004).

2.3. Street network analysis

Street networks – considered here as primal, non-planar, weighted
multidigraphs with self-loops – can be characterized and described by
metric and topological measures. Extended definitions and algorithms
can be found in, e.g., Newman (2010) and Barthélemy (2011).

Metric structure can be measured in terms of length and area and
represents common transportation/design variables (e.g., Cervero &
Kockelman, 1997; Ewing & Cervero, 2010). Average street length, the
mean edge length (in spatial units such as meters) in the undirected
representation of the graph, serves as a linear proxy for block size and
indicates how fine-grained or coarse-grained the network is. Node den-
sity is the number of nodes divided by the area covered by the network.
Intersection density is the node density of the set of nodes with more
than one street emanating from them (thus excluding dead-ends).
The edge density is the sum of all edge lengths divided by the area, and
the physical street density is the sum of all edges in the undirected rep-
resentation of the graph divided by the area. These densitymeasures all
provide further indication of how fine-grained the network is. Finally,
the average circuity divides the sum of all edge lengths by the sum of
the great-circle distances between the nodes incident to each edge (cf.
Giacomin & Levinson, 2015). This is the average ratio between an edge
length and the straight-line distance between the two nodes it links.

The eccentricity of a node is the maximum of the shortest-path
weighted distances between it and each other node in the network.
This represents how far the node is from the node that is furthest
from it. The diameter of a network is the maximum eccentricity of any
node in the network and the radius of a network is theminimum eccen-
tricity of any node in the network. The center of a network is the node or
set of nodes whose eccentricity equals the radius and the periphery of a
network is the node or set of nodes whose eccentricity equals the diam-
eter. When weighted by length, these distances indicate network size
and shape in units such as meters.

Topological measures of street network structure indicate the config-
uration, connectedness, and robustness of the network – and how these
characteristics are distributed. The average node degree, or mean num-
ber of edges incident to each node, quantifies how well the nodes are
connected on average. Similarly, butmore concretely, the average streets
per node measures the mean number of physical streets (i.e., edges in
the undirected representation of the graph) that emanate from each in-
tersection and dead-end. This adapts the average node degree for
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