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Climate observations andmodel simulations produce vast amounts of data. The unprecedented data volume and
the complexity of geospatial statistics and analysis requires efficient analysis of big climate data to investigate
global problems such as climate change, natural disasters, diseases, and other environmental issues. This paper
introduces a high performance query analytical framework to tackle these challenges by leveraging Hive and
cloud computing technologies. With this framework, we propose grid transformation, a new perspective for
complex climate analysis that applies a series of atomic transformations to terabytes of climate data using SQL-
style query (HiveQL). Specifically, we introduce four types of grid transformations (temporal, spatial, local, and
arithmetic) to support a broad range of climate analyses, from the basic spatiotemporal aggregation to more so-
phisticated anomaly detection. Each query is processed asMapReduce tasks in a highly scalableHadoop cluster as
the parallel processing engine. Big climate data are directly stored andmanaged in a Hadoop Distributed File Sys-
temwithout any data format conversion. A prototype is developed to evaluate the feasibility and performance of
the framework. Experimental results show that complex and data-intensive climate analysis can be conducted
using intuitive SQL queries with good flexibility and performance. This research provides a building block and
practical insights in establishing a cyberinfrastructure that provides a high performance and collaborative envi-
ronment for data-intensive geospatial applications in climate science.
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1. Introduction

Global climate models simulate the earth-atmospheric-ocean sys-
tem and have been used to project future climate changes. In building
a better understanding of the climate, environment, and anthropogenic
influences on the system, thesemodels create massive amounts of data.
For example, the data volume provided for the Fifth Assessment Report
(AR5) of the Intergovernmental Panel on Climate Change (IPCC) is 1.7
petabytes (WDCC, 2015). Additionally, recent advancements in data ac-
quisition technology, including remote sensing, have allowed us to col-
lect massive volumes of observational data. Efficient analysis of vast
climate data sets enables scientists to address fundamental questions
about global and regional climate, such as trends, anomalies, and ex-
tremes (Das & Parthasarathy, 2009).

These climate data play a critical role in understanding how the
complex climate system works. They also typify the characteristics of
“Big Data” (Manovich, 2011) and pose several grand challenges to

data management, processing, and analytical infrastructure in three
aspects:

• Volume: Climate data aremassive in volume. NASA Goddard Institute
for Space Studies (GISS) ModelE, for example, produces 2.5 terabytes
of data with one ensemble run (Sun et al., 2012). The Data Active Ar-
chive Centers (DAACs) provide tens of terabytes of high quality NASA
data products for inferring a large number of physical phenomena
from Earth observing instrument records (Chapman, Simon, Nguyen,
& Halem, 2013). Such magnitude exceeds the capability of any data
storage and processing system on a stand-alone computer (Wang et
al., 2013) because the computational requirements involved go
beyond what a typical workstation can support. Such big climate
data calls for distributed storage media and innovative computing
architecture.

• Velocity: Climate data from real-time monitoring, Earth observation
systems (EOS), or model simulations are generated dynamically and
continuously. With the advancement of satellite and sensor systems,
Earth observation andmonitoring data are collected and accumulated
at an unprecedented speed. These real-time data, while essential to
understanding Earth-system processes, require an adaptable system
to dynamically adjust to different acquisition rates coming from
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different sensors. Meanwhile, climate models can be run on thou-
sands of remote servers with different parameterizations (Stainforth
et al., 2002) to verify and validate a climate model or test our hypoth-
esis of climate change for better decision making (Li et al., 2014). The
output from such a distributed network is uploaded to the data server
concurrently and continuously, generating unpredictable traffic loads.
Traditional climate data handling system cannot adjust to such dy-
namic processes because they lack scalable computing infrastructures
to handle streaming climate data. Consequently, climate data process-
ing must be extended to cope with this dynamic information flow.

• Variety: Climate data are complex in nature, and often produced and
stored in different forms. For example, many different data models,
formats, standards, tools, services, and terminology are defined and
designed to organize and store EOS data by geoscience communities.
Additionally, climate data are highly dimensional, including spatio-
temporal dimensions and a variety of climate attributes or variables,
such as temperature, precipitation, pressure and relative humidity.
As a result, analytic operations over climate data need to quickly re-
trieve minimum inputs that indicate the climate variable, spatial ex-
tent, and temporal scope (Schnase, Duffy, McInerney, Webster, &
Lee, 2015). To leverage the widely available data sources for studying
climate processes and mining hidden patterns, the community ur-
gently needs a flexible data structure and a storage and analytical
framework that can easily organize and process multi-sourced, high-
dimensional climate data.

Addressing these challenges, known as 3Vs, requires efficient data
management strategies, complex parallel algorithms, and scalable com-
puting resources. Currently, NoSQL systems and large-scale data plat-
forms based on MapReduce paradigm, such as Hadoop, are widely
used for big data management and analytics (Witayangkurn,
Horanont, & Shibasaki, 2013). However, current implementations of
MapReduce-based management and data processing systems do not
offer enough support for spatiotemporal data query and analytics.
Array-based database systems, such as RasDaMan (Baumann, Dehmel,
Furtado, Ritsch, & Widmann, 1998, 1999) and SciDB (Brown, 2010;
Cudré-Mauroux et al., 2009), have emerged as scalable database solu-
tions to store and retrieve massive, multi-dimensional datasets that
were traditionally stored and organized in various formats, such as
NetCDF, and HDF. However, these solutions have proved to be limited
in handling massive, multi-dimensional big data because they lack
high-performance support, and scalability (Liu, 2014). Also, these sys-
tems require conversion of large data sets to specific formats – an unde-
sirable step considering the volume.

To bridge the gap and advance data-intensive climate studies, this
paper introduces a high-performance query analytical framework,
which allows us to perform data-intensive analysis in parallel using in-
tuitive SQL-style queries. The remaining paper is organized as follows:
Section 2 reviews the current status for big climate data analytics and
query processing techniques; Sections 3 & 4 detail the framework and
methodologies; Section 5 evaluates the frameworkwith a proof-of-con-
cept prototype; and Section 6 offers summary remarks.

2. Related work

2.1. Evolution of climate data analytics

In the past decade, a variety of analytical tools dealing with climate
data has been developed to process and analyze climate data. For exam-
ple, NASA developed a cross-platform tool, known as Panoply,1 to plot
and explore geo-referenced and other arrays from NetCDF, HDF, GRIB,
and other datasets. Chapman et al. (2013) described a statistical aggre-
gation engine “Gridderama” for climate trend analysis. ViSUS/Climate

Data and Analysis Tools (CDAT) system was implemented to provide
the user with a variety of visualization techniques for data exploration
and analysis (Potter et al., 2009). Based on CDAT, the Ultra-scale Visual-
ization ClimateData Analysis Tools (UV-CDAT)was developed to enable
parallel visualization and analysis of computer model output resulting
from high-resolution, long-term, climate change projections (Santos et
al., 2013). UV-CDAT consists of several components, including CDAT
(used in the climate community since 1995), VisTrails, DV3D, ParaView,
and the Visualization Toolkit (VTK, an open source, object-oriented li-
brary for visualization and analysis). Despite strong analytical capabili-
ties, these systems have notable limitations. Users need to download
and install multiple packages on their machines, and to identify and
manually download the data. Additionally, they are not flexible, and
the functionalities are static.

With the advancement of Internet and computing infrastructure, cli-
mate data analytical systems are transitioning from the traditional
models – running on stand-alone desktop computers or workstations
– to the Web. Currently, many online systems are developed to deliver
analytics capabilities of visualizing, analyzing, and accessing vast
amounts of climate data (e.g., Acker & Leptoukh, 2007; Sun et al.,
2012; Luo et al., 2015). These online systems overcome the limitations
of the stand-alone systems by managing large volume datasets over
the Internet and support interactive data analysis.

Cloud computing emerges as a new computing paradigm with a
flexible stack of massive computing, storage, and software services to
support big data analytics in a scalable manner at low cost (e.g. Yang
et al., 2011; Li, Yang, Yu, Liu, & Sun, 2015; Li Hodgson & Li, 2016). Vari-
ous climate applications are leveraging such flexible and on-demand
cloud resources, for example, running coupled atmosphere-ocean cli-
mate models (Evangelinos & Hill, 2008), and supporting dust storm
forecasting (Huang et al., 2013). Li et al. (2014) proposed Model as a
Service (MaaS), a cloud-computing solution for Internet-based climate
model simulation for the public. With Analytics as a Service (AaaS),
cloud computingnot only provides the computing infrastructure to sup-
port Big Data handling, but also provides a computingmodel to support
to discovery in Big Data (Lomotey & Deters, 2014). Specifically, the con-
cept of Climate AaaS (CAaaS) emerged to provide climate data analytics
as web services in a high performance and scalable way (Schnase et al.,
2014; Schnase et al., 2015). This paper contributes to the literature an-
other solution for conducting large-scale climate data analytics using
the SQL-style query in a scalable, flexible, and high-performance
manner.

2.2. High performance computing for handling raster data

Efficient processing and analysis of massive spatial raster data (e.g.
climate data inHDF format) is paramount to geospatial problem-solving
and decision-making. Big raster data derived from imaging and spatial
applications require high performance computing support and the de-
velopment of novel techniques. Currently, various HPC-enabled tech-
niques are proposed to process massive raster data. Zhang, You, and
Gruenwald (2010), for example, introduced an approach for fast
indexing of large-scale raster geospatial data using Graphics Processing
Unit (GPU) computingwhich improved speed by twenty-three times in
controlled experiments. More similar works on spatial big data process-
ing (e.g., spatial indexing and spatial joins) on GPUs and GPU-accelerat-
ed clusters, were reported in a later study (Zhang, You, & Gruenwald,
2015). Scott, Backus, and Anderson (2014) also developed a GPU cluster
framework to process geospatial raster data in parallel across tiles to ex-
tract refined geospatial information.

MapReduce frameworks, e.g. Hadoop, can easily scale data computa-
tion over multiple computing nodes and therefore are well suited for
spatial data processing and spatial analysis in a variety of geospatial ap-
plications, such as satellite data processing and analysis (Golpayegani &
Halem, 2009; Li, Yang, Liu, Hu, & Jin, 2016). Examples of remote sensing
data handling based on the MapReduce framework include Sobel1 http://www.giss.nasa.gov/tools/panoply/
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