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A B S T R A C T

The development of a MATLAB based computer code, AP3DMT, for modeling and inversion of 3D
Magnetotelluric (MT) data is presented. The code comprises two independent components: grid generator
code and modeling/inversion code. The grid generator code performs model discretization and acts as an
interface by generating various I/O files. The inversion code performs core computations in modular form –

forward modeling, data functionals, sensitivity computations and regularization. These modules can be readily
extended to other similar inverse problems like Controlled-Source EM (CSEM). The modular structure of the
code provides a framework useful for implementation of new applications and inversion algorithms. The use of
MATLAB and its libraries makes it more compact and user friendly. The code has been validated on several
published models. To demonstrate its versatility and capabilities the results of inversion for two complex models
are presented.

1. Introduction

Several 3D electromagnetic data inversion approaches and parallel
computer codes were developed during the first decade (notably,
Newman and Alumbaugh (2000), Zhdanov and Hursan (2000),
Haber et al. (2004), Newman and Boggs (2004), Siripunvaraporn and
Egbert (2009), Avdeev and Avdeeva (2009), etc.). Most of these codes
were focused on inversion with a particular computational approach.
Recently, Egbert and Kelbert (2012) and Kelbert et al. (2014)
presented a Fortran code, ModEM, with its emphasis on modular
implementation of the basic components of inversion - forward
modeling, model parametrization and regularization, data functionals,
sensitivity computation and inversion algorithms which are reusable
and readily extensible. This and most of the previous codes are written
in Fortran programming language. Many of these algorithms permit
interchangeability and re-usability of various subprograms thereby
providing a code base for development of new inversion algorithms.
However, it is difficult for a new researcher to make desired changes for
experimentation. MATLAB provides a solution to this problem and we
have developed the present code, AP3DMT, on MATLAB platform.
AP3DMT provides a basic framework for 3D modeling and inversion
which is flexible for rapid development and experimentation with
different schemes of inversion, parametrization and regularization.
This code will provide a basic framework to researchers who are
conversant with MATLAB and willing to use or develop its capabilities
for future applications.

In the present paper, main focus is on program structure with some

basic mathematical formulae required for implementation. Section 2
provides the basic theory for forward modeling and inversion along
with main components for sensitivity computations. For detailed
discussion one can refer (Egbert and Kelbert, 2012). The program is
divided into two parts. The first part includes grid generator and I/O
subprograms (functions in MATLAB) while the second part includes
modeling/inversion. Section 3 describes the overview of the program
including grid generator for common models with cuboids and/or
polyhedron shaped target bodies and forward/inverse modeling. The
main feature of grid generator is its robustness in handling complex
geological features needed to simulate responses for complex 3D
structures. Such an efficient grid generator is useful when performing
block inversion (Singh et al., 2014). A detailed description and
implementation of inversion and sensitivity computations is also
provided in this section. These subprograms, along with a coarse
grained parallelization (Section 4), can be directly used for a wide range
of problems. The key feature of AP3DMT is its capability to accom-
modate modifications in the forward problem (e.g., different forward
solver, different types of responses, model parameters, etc.) and their
easy implementation without any modifications in other subprograms
like, inversion subprogram. In Section 5, we provide details about the
actual computations for both forward problem (i.e. forward solutions,
evaluation of EM field components, etc.) and sensitivity computations.
In Section 6, we demonstrate the code versatility for grid generation
and inversion with the help of two synthetic examples.
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2. Theory

2.1. Forward modeling

The electric field E are simulated by solving the vector Helmholtz
equation, given below, in frequency domain (assuming eiωt time
dependence),

iωμσE E∇ × ∇ × + = 0, (1)

where ω is the angular frequency, μ is the magnetic permeability and σ
is the conductivity. Magnetic fields corresponding to an electric field
solution E can be expressed as iωμH E= (− ) ∇ ×−1 .

(1) is approximated on a staggered-grid (Yee, 1966), as shown in
Fig. 1, using finite difference (FD) formulation. The linear system, for
frequency f, resulting after symmetric scaling can be expressed as

A e s= ,m (2)

where Am is a frequency dependent N N×e e sparse symmetric
complex matrix with 13 non-zero elements per row; s is the Ne

dimensional source vector and e is the Ne dimensional vector repre-
senting electric fields at the Ne internal nodes. This sparse linear system
is solved iteratively using bi-conjugate gradient stabilized (BiCGSTAB)
scheme which belongs to a class of Krylov subspace techniques. The
incomplete LU decomposition of the diagonal sub-block matrix
(Mackie et al., 1994) is used for pre-conditioning.

For stable and accurate solutions of (2) at low frequencies, a
divergence correction is periodically applied (Smith, 1996) by solving
a Poisson-like equation with pre-conditioned conjugate gradients (CG).
Smith (1996) has shown that the convergence is improved by applying
divergence correction and it thereby significantly reduces the computa-
tional time needed for solution of (2).

2.2. Inversion

All the inversion algorithms aim at finding a meaningful model m͠, a
M- dimensional model parameter vector, while fitting the data dobs of
dimension Nd to an acceptable level in a stable manner. We consider
minimization of the penalty functional defined as

ϕ F F λm d d m C d m m m C m

m

( , ) = ( − ( )) ( − ( )) + ( − ) (

− ),

͠ ͠ ͠ ͠ ͠∼ ∼obs obs T obs T
d 0 m

0

−1 −1

(3)

where F m( )͠∼
is the forward mapping, Cd is the data covariance matrix,

m0 is the apriori model, Cm is the model covariance matrix or
regularization term and λ is the trade-off parameter. Cd is generally
diagonal hence, it can be eliminated from definition of penalty
functional by simply rescaling of data and forward mapping. Both m0
and Cm can also be eliminated from (3) by setting m C m m= ( − )͠m 0

−1/2 .

This transformation reduces (3) to

ϕ F F λm d d m d m m m( , ) = ( − ( )) ( − ( )) + ,obs obs T obs T (4)

where, F Fm C m m( ) = ( + )∼
m 0
1/2 . After minimizing (4) in transform

domain the model parameters are transformed back into the space of
the original model parameter m C m m= +͠ m

1/2
0. For details one can

refer to Kelbert et al. (2008). We have implemented both quasi-linear
inversion and non-linear inversion using conjugate gradient for the
minimization of (4).

2.2.1. Quasi-linear inversion
In this approach, the objective functional is first approximated by a

Taylor series expansion. The quadratic approximation of the objective
functional is then minimized to produce a series of the updated models.
In the Gauss Newton (GN) method only the first derivative in the
Hessian matrix of Newton's method is retained but the second-order
derivative is discarded. This leads to an iterative sequence of approx-
imate solutions as,

λ δ λJ J I m J r m( + ) = − ,T
n

T
n (5)

where mn are the model parameters at the nth iteration, J is Jacobian
and Fr d m= − ( )obs

n is the residual. (5) is solved for δmn and the new
updated model parameter vector is obtained as δm m m= +n n n+1 . For
stability this linearized scheme generally requires some form of step
length damping (Marquardt, 1963; Rodi and Mackie, 2001).
Alternatively, instead of solving for δm one can solve for mn+1 using
Occam approach (Constable et al., 1987; Parker, 1994). In Occam's
algorithm (5) is written as

λJ J I m J d( + ) = ,T
n

T
+1 (6)

where Fd d m Jm= − ( ) +obs
n. In data space, (Siripunvaraporn and

Egbert, 2000; Siripunvaraporn et al., 2005) the solution of (6) is
written as

λm J b JJ I b d= ; ( + ) = .n
T

n
T

n+1 (7)

To avoid explicit computation and storage of J, (6) and (7) are solved
with a memory efficient Krylov subspace iterative solver such as
conjugate gradients (CG). In this approach, the product of matrix
and an arbitrary vector such as λJ J I m( + )T is computed and this can
be performed at the cost of just two forward problems. Following
Newman and Alumbaugh (1997), at the nth inversion iteration, the
regularization parameter λ for GN is determined as λ r= /2sum

n−1 where,
rsum is the largest row sum of real J J( )T .

2.2.2. Non-linear inversion using conjugate gradient
In this approach, (4) is directly minimized using a gradient based

optimization technique like non-linear conjugate gradient (NLCG)
(Rodi and Mackie, 2001; Newman and Boggs, 2004; Kelbert et al.,
2014). Here, the gradient of (4) with respect to the variation in model
parameter m is computed as,

ϕ λ
m

J r m∂
∂

= −2 + 2 ,T
n

mn (8)

and it is used to a compute new ‘conjugate’ search direction. The ‘line
search’ is used to minimize the penalty functional along this direction
and it requires solving forward problem few times and the gradient is
recomputed. Basic computational steps for NLCG include solving
forward problem for model parameter mn and multiplication of JT by
the residual r. However, for the regularization parameter approach
described above, this scheme does not work because varying the
regularization parameter would compromise the orthogonality of
search directions (Egbert, 2012). Following Kelbert et al. (2008),
NLCG iterations are performed for fixed value of λ and when misfit
stalls i.e. difference between misfits of two previous iterations is less
than a predefined threshold, λ is reduced by a predetermined factor (10

Fig. 1. Staggered finite difference grid for the 3D MT forward problem. Since the PDE is
formulated in terms of electric field components, these are defined on cell edges and the
magnetic field components are defined on center of the cell faces.
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