Author's Accepted Manuscript

Impact of mineralogical heterogeneity on reactive transport modelling

Min Liu, Mehdi Shabaninejad, Peyman Mostaghimi

PII: S0098-3004(16)30456-3

http://dx.doi.org/10.1016/j.cageo.2017.03.020 DOI:

CAGEO3936 Reference:

To appear in: Computers and Geosciences

Received date: 27 September 2016 Revised date: 28 February 2017 Accepted date: 31 March 2017

Cite this article as: Min Liu, Mehdi Shabaninejad and Peyman Mostaghimi Impact of mineralogical heterogeneity on reactive transport modelling Computers and Geosciences, http://dx.doi.org/10.1016/j.cageo.2017.03.020

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Impact of mineralogical heterogeneity on reactive transport modelling

Min Liu¹, Mehdi Shabaninejad², Peyman Mostaghimi^{1*}

¹School of Petroleum Engineering, The University of New South Wales, NSW 2052, Australia

²Department of Applied Mathematics, The Australian National University, ACT 2601, Australia

*Corresponding author: peyman@unsw.edu.au

Highlights

Effect of mineralogical heterogeneity on reactive transport was investigated.

Mineral map of sandstones was acquired using QEMSCAN SEM-EDS.

Lattice Boltzmann and Finite Volume Methods were applied to model reactive transport.

Pore-scale simulations of multi-mineral reaction were performed directly on rock images.

Abstract

Impact of mineralogical heterogeneity of rocks in reactive modelling is investigated by applying a pore scale model based on Lattice Boltzmann and Finite Volume Methods. Mass transport, chemical reaction and solid structure modification are included in the model. A two-dimensional mineral map of a sandstone rock is acquired using the imaging technique of QEMSCAN SEM with Energy-Dispersive X-ray Spectroscopy (EDS). The mineralogical heterogeneity is explored by performing multi-mineral reaction simulation on images containing various minerals. The results are then compared with the predictions of single mineral dissolution modelling. Dissolution patterns and permeability variations of multi-mineral and single mineral reactions are presented. The errors of single mineral reaction modelling are also estimated. Numerical results show that mineralogical heterogeneity can cause significant errors in permeability predictions, if a uniform mineral distribution is assumed which are related with flow regimes. The errors are smaller in high Péclet regimes than in low Péclet regimes in this sample.

Keywords: Reactive transport \cdot Pore scale heterogeneity \cdot Lattice Boltzmann \cdot Rock minerals \cdot Porous Media

1. Introduction

Reactive transport in porous media is of importance in several applications in subsurface transport processes, chemical sciences and engineering. For example, chemical reactions between pollutants and soil release toxic products resulting in serious environmental concerns. During sequestration of carbon dioxide in subsurface aquifers, the CO₂ dissolves

Download English Version:

https://daneshyari.com/en/article/4965254

Download Persian Version:

https://daneshyari.com/article/4965254

<u>Daneshyari.com</u>