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A B S T R A C T

Estimation of correlation with appropriate uncertainty limits for scientific data that are potentially serially
correlated is a common problem made seriously challenging especially when data are sampled unevenly in space
and/or time. Here we present a new, robust method for estimating correlation with uncertainty limits between
autocorrelated series that does not require either resampling or interpolation. The technique employs the
Gaussian kernel method with a bootstrapping resampling approach to derive the probability density function
and resulting uncertainties. The method is validated using an example from radar geophysics. Autocorrelation
and error bounds are estimated for an airborne radio-echo profile of ice sheet thickness. The computed limits
are robust when withholding 10%, 20%, and 50% of data. As a further example, the method is applied to two
time-series of methanesulphonic acid in Antarctic ice cores from different sites. We show how the method
allows evaluation of the significance of correlation where the signal-to-noise ratio is low and reveals that the two
ice cores exhibit a significant common signal.

1. Introduction

Sparse data correlation techniques, and the confidence limits
associated with them, are a keystone of quantitative analysis in
geoscience. However, uneven sampling of data is a common feature
in many fields, and our inability to prescribe appropriate interpolations
between data may hinder the statistical application of results. In many
cases, this may come about as an inherent sampling non-uniformity. In
the case of ice cores, for example, the relationship between the spatial
and temporal distribution of a sample material varies with depth such
that uniform spatial sampling generates non-uniform sampling on a
temporal scale. Further difficulty arises from missing data or data gaps,
which may be caused by physical sample size constraints, damage, or
loss of samples due to contamination or analytical problems. Where
numerical methods require evenly sampled data, interpolation is
necessary, but must be used cautiously to avoid signal artifacts. The
use of common software tools to interpolate between data points often

comes at the expense of robustness, as bias may be introduced.
Rehfeld and Kurths (2014) investigated this issue in detail, bench-

marking a variety of techniques to overcome the challenges introduced
by irregularly-sampled time series. The use of a Gaussian kernel
method gave a reliable and robust estimation in comparison to
commonly-used interpolation approaches such as resampling onto a
common uniform independent grid. Complications arise for irregu-
larly-sampled data with inherent autocorrelations, however, as the
estimation of a confidence interval, or some other measure of sig-
nificance, requires explicit and quantitative consideration of the
autocorrelations (Mudelsee, 2003; Ólafsdóttir and Mudelsee, 2014).
Several methods exist for the assessment of significance, for evenly
sampled data, in the presence of autocorrelation. Such methods include
the effective spatial degrees of freedom method of Bretherton et al.
(1999) which uses classical tests with a reduced number of degrees of
freedom to account for autocorrelations in the data, and data surro-
gates such as bootstrapping and Fourier space methods. These latter
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methods make no assumptions on the distribution of the data
(Mudelsee, 2003), so may be more appropriate for many real-world
datasets. Compared to standard bootstrapping techniques, Fourier
space methods have the advantage of preserving linear correlations,
but lose many of their computational advantages for irregularly-
sampled data.

Here, we report the development of the Gaussian kernel method,
extended to provide confidence interval information, with application
to airborne glacier geophysical data. An evenly-sampled, highly auto-
correlated dataset of Antarctic ice thicknesses from the ICECAP
(Investigating Cryospheric Evolution through Collaborative
Aerogeophysical Profiling) project (see Fig. 1 for location) provides a
suitable test data set to validate the approach. The correlation and
confidence interval distribution is compared to a recently published
method (Ólafsdóttir and Mudelsee, 2014). Data were randomly re-
moved to simulate the effect of uneven data spacing and the resulting
autocorrelation distributions compared.

As a second independent demonstration of the strength of the
technique we compute the correlation between time series of metha-
nesulphonic acid (MSA) concentration in two Antarctic ice cores (see
Fig. 1 for location). MSA has been used as a proxy for Antarctic sea ice
extent (Curran et al., 2003), based on the production of MSA from sea
ice-associated phytoplankton which are known to be a dominant
sulphur source from the sea-ice edge in Antarctica (Vance et al.,
2013). Confirming that a statistically significant (at a 95% confidence
interval) relationship exists between the two MSA records supports the
hypothesis that the records preserve a common environmental signal.

While the Mudelsee (2003); Ólafsdóttir and Mudelsee (2014)
method can be used on unevenly spaced climate time series data, in
cases where the data are both unevenly spaced and on a different time
base their method requires interpolation or resampling. Our Gaussian
Kernel-based method removes the need for such resampling, making it
well suited to computing correlations between paleoclimate records

from different locations and different archives, in which different time
bases are ubiquitous.

2. Method

2.1. Correlation

Correlations (Cxy) between unevenly and differently sampled series
(xi and yj) are calculated using the Gaussian kernel correlation slotting
(Rehfeld et al., 2011).
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where the average of the two series xi and yj (of length nx and ny) is x
and y , respectively, and dx and dy are the independent variables
(typically time or distance) for x and y respectively, and may differ from
each other. The Gaussian kernel K d d h( ) = exp(− /2 )
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parameter (h) of one quarter of the larger of the average spacing of the
two data series. Unlike Rehfeld et al. (2011) who normalise the signals
to have zero mean and unit variance, we use the original signals and
correct for the mean and estimate the standard deviations (σx and σy)
using the same weighted summation Gaussian kernel (K d( )) as used in
Eq. (1).

2.2. Bootstrapping

Confidence intervals (95%) are estimated using a stationary boot-
strapping technique (Politis and Romano, 1994). This method accounts
for persistence (serial correlation) and the associated reduction in the
effective degrees of freedom in the data (Wilks, 2006) by generating

Fig. 1. Location of an airborne radar transect yielding ice thickness data (red line). Elevation contours at 500 m are from Bamber et al. (2009) (grey lines) and the ice sheet grounding
line is from Bindschadler et al. (2011). Inset shows the Law Dome region of East Antarctica and the sites of the two ice cores (red stars), with DSS97 being closer to the dome summit and
W10K being close to the 1300 m elevation contour.
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