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A B S T R A C T

In geostatistical simulation, a realization represents one possible outcome of the spatial uncertainty model. Tens
to hundreds of realizations are generated in order to understand response property variation. There are ways to
summarize local uncertainty, but visualizing all realizations is important to understand joint uncertainty
between multiple locations. There is no straightforward manner to visualize all realizations at the same time or
in sequence. This paper presents a new method to sequentially display multiple geostatistical realizations. The
proposed algorithm performs an ordering of the visible portion of the realizations (images), according to the
distance between realizations. The concept of distance corresponds to the differences computed cell by cell for
every realization pair or to the differences computed from a moving window filtering applied to each realization.
To define an optimal sequence of realizations, the shortest path route through the realizations is established by a
simulated annealing technique. The gradual transition between realizations is enhanced by an image morphing
technique where intermediate images are introduced between the original images. The final result consists of an
animation that shows the sequence of realizations and allows better understanding of the uncertainty model.

1. Introduction

Geostatistical realizations must be treated as an ensemble.
Although they may be ranked by a response variable such as in-place
resources, two adjacent realizations may appear completely different
due to areas of high and low values occurring in different locations.
This creates a challenge for visualizing the uncertainty in an ensemble
of 3D model realizations, which is an integral part of geomodeling
applications (Viard et al., 2011). Note that visualizing one realization or
a single estimated model does not convey uncertainty.

In this context, advances in computational speed and storage have
made it possible to study the development of complex and dynamic
systems and represent results accordingly. There is an increase in
productivity due to newly developed automated strategies and shared
computation. Although the number of realizations of geostatistical
simulation is increasing and has been automated, we believe human
inspection is still required for quality control and to analyze the results.
Tools to help process and analyze an ensemble of realizations in a
qualitative and productive manner are required.

The challenge is to handle the information generated by an
uncertainty analysis from a geostatistical approach. Geostatistical
simulation techniques are relatively well established. The application
of geostatistical techniques with geospatial data and the computation of
uncertainty in the resulting model are reasonably well understood. In

terms of visualization, there are many programs to display and
manipulate complex 3D models and their internal properties.
Representation of high dimensional uncertainty, however, is still a
challenge because there are a restricted number of available visual
channels to represent it, such as data position, color, texture and
opacity.

According to Potter et al. (2012), this quantification must be
simplified in order to display many realizations in an appropriate
and effective visual manner that allows for human perception.
Lamigueiro (2014) presents the uncertainty by showing realizations
side by side (simultaneous) and with superimposed results (con-
densed). Obermaier and Joy (2014) focus on visualization methods
for understanding the similarities, differences and trends among the
members of the realization group. Viard et al. (2011) present three
methods for uncertainty representation. In the visually separable
methods, the uncertainty space is subdivided into a set of smaller
ranges, each of which is assigned a different pattern, resulting in a
categorization of uncertainty levels (e.g. Cedilnik and Rheingans, 2000;
Interrante, 2000; Rhodes et al., 2003; Djurcilov et al., 2001). The
visually integral methods fill clarity and blurring objects according to
their relevance or uncertainty degree (e.g. MacEachren, 1992; Kosara
et al., 2001; Robinson, 2006). The animation methods use time to
transmit a sense of uncertainty, displaying maps sequentially ordered,
according to a relevant objective function and using some interpolation
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algorithm between the frames (e.g. Fisher, 1993; Srivastava, 1994;
Ehlschlaeger, 1997; Davis and Keller, 1997; Dooley and Lavin, 2007).

Phadke et al. (2012) also mention the animation technique to
support a set of realizations. The pairwise sequential animation method
orders n members of an ensemble (a collection of related datasets),
combines subsets of realizations, and presents them as an animated
visualization using hue and texture. Höllt et al. (2014) introduce the
ensemble visualization approach for spatially distributed data, defined
as a collection of n values of a single variable in m dimensions. In our
case, this approach is used for an ensemble of realizations generated for
a geological model. The ensemble visualization approach appears in
several works (e.g. Kao et al., 2001, 2005, Luo et al., 2003, Love et al.,
2005, Obermaier and Joy, 2014). This approach can be considered a
specific method from the general uncertainty visualization methods,
applied when uncertainties are not well represented in quantitative
terms.

This paper presents a new method to sequentially display multiple
geostatistical realizations, combining both animation methods and the
ensemble visualization approach. The emphasis is on the visualization
aspect of post processing and not on the details of model construction.
There are many references available with model construction details.
The assumption here is that an ensemble of realizations is available in a
common numerical format. There are likely tens to hundreds of
realizations. The realizations likely contain millions of locations;
however, not all locations will be visible on a particular display.
Some locations will be transparent to see deeper into the model and
some locations will be blocked behind locations that are being
displayed.

A sequence of realizations is defined by their similarities/dissim-
ilarities. Numerical or quantitative differences between two realizations
define a distance for each pair of images. Realizations that are close
together are displayed one after another. The results are presented as a
dynamic animation, which shows the defined sequence of realizations.

Although some results on a 2D grid are presented, the main idea of
this work is to apply the proposed approach to any visualization of 3D
geological models (Fig. 1). A user can choose an arbitrary view plane(s)
and visualize all realizations available for this plane. Fig. 1 shows an
arbitrary view with some horizontal views visible and some cross
sections visible. The order of realizations would not change with
zooming or panning, but would change when the position of the slices
is changed. The visualization ordering would be automatically recalcu-
lated when the view plane is changed. Software would cycle the
realizations in the optimized sequence at a specified speed until the
view is changed. Thus, no one realization is chosen. The realizations do

not change at the data locations. The greatest changes would occur
away from the data.

The rest of this paper is organized as follows. The second section
reviews different techniques used in this research: distance of realiza-
tions, simulated annealing and image morphing. The third section
describes the new methodology. The fourth section shows and dis-
cusses some examples using the proposed technique. Finally, conclu-
sions are presented and future work is outlined.

2. Methodology

2.1. Distance between realizations – continuous variables

Even with computational advances over the years, exploring
hundreds of geostatistical realizations simultaneously is not well
understood. The spatial pattern of any single realization is not of
particular interest. Instead, there is more information in understanding
the features that can vary between realizations and the features that are
consistent across realizations.

Summary models of uncertainty are useful. The local variance,
probability of net reservoir or difference between realizations are useful
summary statistics. Visualization of such models would quickly reveal
areas that are more uncertain and areas that are less uncertain.
However, these visualizations would not show the heterogeneity and
joint uncertainty between multiple locations that impacts reservoir
performance. Summary models inevitably change smoothly away from
well control. Focusing on such models may lead the professional to
believe the reservoir properties change smoothly.

Another approach is to define a summary response function to
index the geostatistical images. This response could be used to order or
classify the realizations. Several different similarity metrics are used for
this purpose in the literature. In the environmental sciences, for
example, similarity metrics include empirical orthogonal functions
(Koch et al., 2015), connectivity analysis (Koch et al., 2016), fractions
skill score (Roberts and lean, 2008), feature based analysis (Wolff et al.,
2014) and spatial prediction comparison test (Gilleland, 2013).

In petroleum applications, the realizations could be ordered
according to static reservoir properties such as porosity, facies propor-
tions or hydrocarbon volume. In terms of dynamic properties, realiza-
tions could be ordered by connectivity or flow response. A scalar
response would order the realizations, but the spatial similarity
between adjacent realizations is not guaranteed; realizations with
similar average response could be quite different. A natural ordering
of the realizations requires calculating the difference between them.
The greater the difference, the greater the distance between any two
realizations. Formally, a distance is a function D with nonnegative real
values that presents a symmetric property. Considering two different
points A and B, the distance calculated from A to B is equal to the
distance calculated from B to A, i.e. DA,B = DB,A.

A spatial distance function is proposed to compare the entire set of
images coming from an underlying pool of realizations. A Euclidean-
based distance provides a simple formulation and a clear interpreta-
tion. Let I and I’ be two realizations that are composed of N visible grid
cells. The distance Dl,l’ is the sum of differences between realizations,
which is calculated cell-by-cell as follows:

∑D Z Z= { − ′ } ,l l
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(1)

wherem denotes the grid cells that are visible, N denotes the number of
visible grid cells and Zm denotes the cell values of the two realizations.

The cells could be weighted by how much of them is visible. For
example, cells on a cross section may not be as visible as those in plan
view (refer back to Fig. 1). To avoid undue influence of extreme values,
these distances could be calculated after applying a moving window
filtering. This modifies a cell value by taking the average of a fixed

Fig. 1. An arbitrary set of view planes from a 3D geological model. The color in this case
represents the porosity of a reservoir layer.
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