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A B S T R A C T

This paper describes a quasi-equal area subdivision algorithm based on equal area spherical subdivision to
obtain approximated solutions to the problem of uniform distribution of points on a 2-dimensional sphere,
better known as Smale's seventh problem. The algorithm provides quasi-equal area triangles, starting by
splitting the Platonic solids into subsequent spherical triangles of identical areas. The main feature of the
proposed algorithm is that the final adjacent triangles share common vertices that can be merged. It applies
reshaping to the final triangles in order to remove obtuse triangles. The proposed algorithm is fast and efficient
to generate a large number of points. Consequently, they are suitable for various applications requiring a large
number of distributed points. The proposed algorithm is then applied to two geographical data distributions
that are modeled by quasi-uniform distribution of weighted points.

1. Introduction

The problem of distributing N points uniformly over the surface of a
sphere has been investigated for many decades (Robinson, 1961;
Berman and Hanes, 1977; Mortari et al., 2011). This problem is one
of the most challenging mathematical problems of the century and it is
known as Smale's 7th problem (Smale, 1998). However, because of its
implications in many areas of mathematics and its immediate practical
applications in engineering, it has not only inspired mathematical
researchers but also attracted the attention in various fields such as
electrostatics, molecular structure, and crystallography (Saff and
Kuijlaars, 1997). The capability of uniformly distributing points on a
sphere has important theoretical consequences in old problems dating
back to Thomson (1904) and Tammes problem (Tammes, 1930) and
important applications such as survey sampling, optimization, dynamic
modeling and information storage, and display in engineering, allowing
the development of optimal algorithms (White, 2000; Mortari et al.,
2011).

Various algorithms have been developed for a small number of
points (Robinson, 1961; Berman and Hanes, 1977; Dragnev et al.,
2002). However, most of them use optimization techniques that are not
efficient for a large number of points. Other more modern algorithms,
such as Chan's Quadrilateralized Spherical Cube Map (QSCM) projec-
tion (1975 Navy report, now out-of-print), extensively analyzed in the
reference (O'Neill and Laubscher, 1976) and applied by Naval and

NASA programs, and the algorithm by Snyder (1992), which is based
on Platonic solids, are efficient and available. These methods all
generate a total number of points (N) proportional to the number of
faces of a Platonic solid; for instance, proportional to 6 (Cube or
Hexahedron) for the QSCM. Teanby (2006) suggested an icosahedron-
based method by subsequent quadrisection for evenly spaced binning
data. Massey (2012) presented a method of constructing equal area
triangles by repeatedly applying quadrisection to icosahedron and
iterative equalization.

In Lee and Mortari (2013b) the authors introduced the main
concepts developed in detail in this article. However, while Lee and
Mortari (2013b) verified the proposed algorithms with Monte Carlo
approach and the Smale's validation in the view of uniformity of
distributing points, in the current manuscript the verification is not
confined to the uniformity of distributing points, but to the subdivision
method.

In view of this, the subdivision approach is considered to develop
an algorithm to distribute a large number of points on the sphere. This
paper is organized as follows. The first section of this paper provides
the equations for the subdivision approach. Then, at the end of the
original equal area subdivision algorithm the subsequent quasi-equal
area final subdivision is provided. Finally, applications to geographical
data are presented.
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2. Subdivision approach

2.1. Splitting a spherical triangle in two equal area spherical
triangles

Consider the generic spherical triangle that is formed on the surface
of the unit sphere by three great circular arcs intersecting pairwise in
three vertices as shown in Fig. 1.

The area of a spherical triangle v v v[ , , ]A B C is obtained by

S A B C π= + + − (1)

where angles A, B, and C are the dihedral angles of the spherical
triangle (Bronshtein et al., 2007).

Let a be the largest side angle, v v a· = cosC B . The problem to solve
here is to find the point on the side a such that the two spherical
triangles identified by the unit-vectors, v v v[ , , ]A B D and v v v[ , , ]A C D , have
identical areas. Since the splitting point, vD, is co-planar to vC and vB, it
can be linearly expressed by the unit-vectors vC and vB as follows.

v v v
a

z a z= 1
sin

[ sin + sin( − )]D C B (2)

where z (see Fig. 1) is the side of the spherical triangle v v v[ , , ]A B D .
Now make use of x and y to denote the angles at the vertices of the

spherical triangle v v v[ , , ]A B D . The area of the spherical triangle
v v v[ , , ]A B D is

S x y B π S A B C π= + + − =
2

= + + −
21 (3)

then

x y D A C π B y D x+ = = + + −
2

and = −
(4)

where D is not a new variable but a known quantity. Applying the law
of cosines to the spherical triangle v v v[ , , ]A B D gives

y x B c x Bcos = sin sin cos − cos cos (5)

Then, using the angle difference identity and Eq. (4), we obtain

y D x D x x B c x Bcos = cos cos + sin sin = sin sin cos − cos cos (6)

and

x D B
B c D

x πtan = cos + cos
sin cos − sin

where 0 < <
2 (7)

Finally, using the law of sines, z y c xsin sin = sin sin , with the spherical
triangle v v v[ , , ]A B D

z x c
D x

sin = sin sin
sin( − ) (8)

is obtained and the vD can be computed using Eq. (2). The process can
then be repeated by always splitting the longest side of the spherical
triangles.

The idea of using spherical triangle splitting to generate points on a
sphere finds the most natural starting point from the perfect spherical
symmetry provided by Platonic solids. The parameters defining the five
Platonic solids are summarized in Table 1 (Zwillinger, 2002). Since
splitting a face into the number of edges with a center of face and
vertices generates identical smaller triangles, initial division depends
on shape of the face. Note that dual solids have same number of initial
faces. Platonic solids with most initial faces are the dodecahedron and
the icosahedron. For these solids the quasi-uniform distribution of
points can be created by initially splitting the i=60 faces into 5 and 3
equal area triangles, respectively.

The sides of a Platonic solid can be projected onto a sphere where
they form arcs. This “Platonic sphere” is the central projection of the
sides of the Platonic solid onto the surface of a unit-radius sphere. The
projection is on the Platonic solids’ circum-sphere, which acts like a
curved projection screen (Popko, 2012). All edges in Platonic solids
have been transformed into geodesic arcs in corresponding platonic
spheres. In platonic spheres all arcs have same length as well as all
edges in Platonic solids. The vertices are corners in the case of spheres
while the vertices are corner in the case of solids.

Let's show the procedure of equal-spherical area subdivision
starting from an icosahedron. The vertices of an icosahedron can be
defined using the Golden ratio

φ = 1 + 5
2 (9)

The 12 vertices can then be obtained as all even permutations of the
following set of coordinate triads
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(10)

2.2. Equal-spherical area subdivision

For equal area subdivisions the algorithm must satisfy the following
requirements:

(1) every subdivision generates triangles for recursive subdivi-
sion, and

(2) the greatest spherical dihedral angle cannot be greater than
90°. This does not allow triangles to degenerate.

It is possible to use various types of equal area subdivision which
preserve area between faces in a planar triangle. However, a few

Fig. 1. Splitting a spherical triangle v v v[ , , ]A B C in two equal area spherical triangles,

v v v[ , , ]A B D and v v v[ , , ]A C D . The angles at the vertices of the spherical triangle v v v[ , , ]A B C

are denoted by the upper case letters A, B, and C while the sides are denoted by lower-
case letters a,b, and c. After subdivision x, y, and B are the dihedral angles andw, z, and c
are the sides of the spherical triangles v v v[ , , ]A B D .

Table 1
Platonic solids parameters. v indicates the total number of vertices, e the total number of
edges, f the total number of faces, p the number of edges in each face (3 for equilateral
triangles, 4 for the squares, and 5 for regular pentagons), q the number of edges meeting
at each vertex. The parameter s indicates the type of initial sub-division (3 for triSection 4
for quadrisection and 5 for pentasection) to create identical triangles and i=p f is the
number of initial faces.

Platonic solids v e f p q s i

Tetrahedron 4 6 4 3 3 3 12
Hexahedron 8 12 6 4 3 4 24
Octahedron 6 12 8 3 4 3 24
Dodecahedron 20 30 12 5 3 5 60
Icosahedron 12 30 20 3 5 3 60

S. Lee, D. Mortari Computers & Geosciences 103 (2017) 142–151

143



Download English Version:

https://daneshyari.com/en/article/4965295

Download Persian Version:

https://daneshyari.com/article/4965295

Daneshyari.com

https://daneshyari.com/en/article/4965295
https://daneshyari.com/article/4965295
https://daneshyari.com

