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A B S T R A C T

Implicit modeling has experienced a rise in popularity over the last decade due to its advantages in terms of
speed and reproducibility in comparison with manual digitization of geological structures. The potential-field
method consists in interpolating a scalar function that indicates to which side of a geological boundary a given
point belongs to, based on cokriging of point data and structural orientations. This work proposes a vector
potential-field solution from a machine learning perspective, recasting the problem as multi-class classification,
which alleviates some of the original method's assumptions. The potentials related to each geological class are
interpreted in a compositional data framework. Variogram modeling is avoided through the use of maximum
likelihood to train the model, and an uncertainty measure is introduced. The methodology was applied to the
modeling of a sample dataset provided with the software Move™. The calculations were implemented in the R
language and 3D visualizations were prepared with the rgl package.

1. Introduction

Implicit methods for 3D geological modeling have risen in popu-
larity over the last decade (Calcagno et al., 2008; Maxelon et al., 2009;
Caumon et al., 2013; Hillier et al., 2013; Jessell et al., 2014; Vollgger
et al., 2015; Wu et al., 2015). Their advantages over explicit models
include reproducibility, automation, easy model update with newly
acquired information, minimal user-induced bias, and the straightfor-
ward incorporation of multi source information (Vollgger et al., 2015).
As stated by McLennan and Deutsch (2006), a good methodology for
implicit modeling should be simple, realistic, and provide some
measure of uncertainty in its results.

Geostatistics is the technique of choice for modeling spatial
variations of properties in geoscientific related problems (Chilès and
Delfiner, 1999; Goovaerts, 1997; Isaaks and Srivastava, 1989). In
geological and/or structural modeling, different forms of kriging have
been used to model geological surfaces (Carr et al., 2001; Cowan et al.,
2003, 2004; Vollgger et al., 2015), orientation data (Gumiaux et al.,
2003), and geological surfaces constrained by orientation data (Aug,
2004; Calcagno et al., 2008; Chilès et al., 2004; Lajaunie et al., 1997).
The latter was termed as “potential-field method”. It is possible to find
implementations of these methods in commercial software.

Machine learning comprises a set of statistical techniques that have
a wide range of applications, such as spam detection, handwritten text

and speech recognition, and recommender systems. As defined by
Flach (2012), machine learning is “the study of algorithms and
systems that improve their knowledge or performance with experi-
ence”, with the “experience” coming from the available data. In other
words, a machine learning algorithm effectively “learns” how to
perform a particular task. Recently there have been works that apply
machine learning methods in the geosciences, such as decision trees to
aid in mineral prospection (Rodriguez-Galiano et al., 2015) and
geological mapping (Cracknell and Reading, 2014), support vector
machines for geological modeling (Smirnoff et al., 2008; Wang et al.,
2014), clustering methods to aid standard geostatistics (Kapageridis,
2014) and identify homogeneous domains in wide areas (Romary et al.,
2014), and attempts to bridge the gap between machine learning and
geostatistics (Hristopulos, 2015). Furthermore, kriging itself is a
machine learning technique widely used for classification and regres-
sion tasks (Rasmussen and Williams, 2006) and function optimization
(Chan, 2010) in any number of dimensions, although it is referred to as
Gaussian Process in the machine learning literature (Rasmussen and
Williams, 2006).

In order to further promote the application of machine learning in
the geosciences, the present work approaches the original potential-
field method by Lajaunie et al. (1997) from another perspective,
recasting it as a multi-class classification problem. Classification is
done within the compositional data framework from Tolosana-Delgado
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et al. (2008) with the probabilistic treatment by Rasmussen and
Williams (2006). The covariance function parameters are inferred
through maximization of the log-likelihood (Mardia and Marshall,
1984), eliminating the need for complicated manual variography of
orientation data (Chilès et al., 2004; Calcagno et al., 2008). The model
also does not depend on structural data to work and does not make
assumptions on the structures’ polarity (i.e. the younging direction).
The algorithms were implemented in the R language (Core Team,
2017) and tested on a dataset contained within the software
Move™ (Midland Valley Exploration, 2014). The article is structured
in the following manner: Sections 2 and 3 lay out the theory and
methodology; Section 4 presents a case study; in Section 5 the results,
strengths and limitations of the method are discussed; and Section 6
presents the conclusions and suggestions for future work.

2. Problem statement

Consider a point in space with coordinates x y zx = ( , , )T and
geological class label given by L cx( ) = , c C∈ 1, 2, …, , where C is the
number of geological classes involved in the problem (geological
formations, domains, lithologies, etc.). Associated with each class there
is an unknown probability π L cx x( ) = Pr( ( ) = )c , as well as an extra
probability π x( )C+1 related to an “unknown” class (its role in the
assessment of model uncertainty shall be explained later).
Compositional data theory (Pawlowsky-Glahn and Buccianti, 2011;
Buccianti et al., 2006) defines the simplex, a C-dimensional subspace
embedded in a C( + 1)-dimensional space in which the probabilities are
contained. This is so due to the natural constraint that π x∑ ( ) = 1c

C
c=1

+1

and π c> 0 ∀c . The theory states that the best way to work with data
constrained in this way is through log-odds. One way of doing so is the
central log-ratio transformation (clr):
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where ϕ x( )c is the log-transformed value and the second term in the
right side corresponds to the logarithm of the geometric mean of the
probabilities. This transformation has the property that ϕ x∑ ( ) = 0c

C
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+1 .
The probabilities can be recovered with a back-transform, also known
in the machine learning community as the softmax function (Bishop,
2006; Flach, 2012):
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The log-transformed probabilities are usually called coordinates,
due to the vector space structure of the simplex. Here they are
denominated potential components in order to establish the
link with the potential field from Lajaunie et al. (1997). In that work
the authors define the potential as a scalar field, with the
geological surfaces of interest being modeled as different isovalues in
that field. Here the potential field is defined as a vector field
ϕ ϕ ϕ ϕx x x x( ) = ( ( ), ( ), …, ( ))C

T
1 2 , and the potential components ϕ x( )c

are all linked due to their compositional origin. Implicit modeling
amounts to estimating ϕ over the region of interest, the details of which
are given in the next section.

2.1 Incorporating structural data

The modeled geological bodies are expected to conform to the
structural measurements obtained in the field. In order for the model
to exhibit this behavior, the iso-potential surfaces must pass tangen-
tially to the measured orientation lines and planes. Given a point s at
position xs, s S∈ 1, 2, …, , with an associated structural direction ds (a
unit vector), this tangent constraint implies that
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where
ϕ x

d
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∂
c s

s
is the directional derivative of ϕc at xs along ds, ϕ x∇ ( )c s is its

gradient, and ·, · is the scalar product. In other words, the gradient of
every potential component must be orthogonal to the measured
directions. If a point belongs to a structural plane there are two
structural directions associated with it, one along dip and the other
along strike. Note that, unlike the original formulation from Lajaunie
et al. (1997), for this method the structural measurements are
completely optional, although they represent an important contribu-
tion to the final model. Furthermore, due to the way that the potential
field is defined here, there is no need to assume an arbitrary modulus
for the gradient or to state its structural polarity.

3. Problem formulation

3.1. Kriging estimation of the potential field

Rasmussen and Williams (2006) define the Gaussian Process (GP)
as “a collection of random variables, any finite number of which have
a joint Gaussian distribution”. It can be seen as a distribution over
functions, specified by a mean function m x( ) and a covariance function
k x y( , ), with x and y being points in space. It is assumed that the
potential components defined above are distributed as GPs:

ϕ m k c Cx x x y( ) ∼ ( ( ), ( , )), ∈ 1, 2, …,c c c (4)

In order to apply this model to the geological data, one must deal
with the matter of how to assign potential vectors to the data points, as
no meaningful probability can be derived for them. All one knows is
that a point is either inside a geological class or in a boundary between
two classes, which only indicates the dominant class (i.e. the one with
highest potential component and probability) but gives no hint as to its
absolute value. Note that simply assigning 0/1 values for the prob-
abilities is not possible, as this would result in an infinite potential.
Tolosana-Delgado et al. (2008) deal with this by assigning an arbitrary
probability b1 − to a point's true class and b

C
to the others, with

b0 < < 0.5. It is shown that this results in a constant scale factor β in
log-transformed space. In order to stay aligned with the definition of
the GP given above, the approach proposed here is to assume the
potential components are independent, normally distributed random
variables with variance σ0

2. The mean potential component ϕ x( )c p at a
data point p, p P∈ 1, 2, …, , is then given by
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The potential component of the unknown class is calculated as
ϕ ϕx x( ) = − ∑ ( )C c

C
c+1 =1 in order to respect the zero-sum property of clr-

transformed variables. Due to the uncertainty over the potential
components, back-transforming through (2) is no longer correct.
Instead, one should estimate the proportion of the multivariate normal
probability density that favors each class, which can be done through
simulation (Rasmussen and Williams, 2006). However, the quantities
of interest here are the positions of the geological boundaries, so the
calculation of probabilities is a secondary issue.

Once P data points and S structural points (hereafter called training
points) are observed and Q test points (where the potential is to be
estimated) are defined, conditioning the joint distribution of the
potential components ϕcP and ϕcQ and directional derivatives of a given
class on the known data yields (Rasmussen and Williams, 2006;
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